Blame view

egs/gale_arabic/s5b/local/chain/tuning/run_tdnn_1a.sh 8.97 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
  #!/bin/bash
  
  # ./local/chain/compare_wer.sh exp/chain/tdnn_1a_sp
  # System                      tdnn_1a_sp
  # WER                             16.47
  # CER                              6.68
  # Final train prob              -0.0652
  # Final valid prob              -0.0831
  # Final train prob (xent)       -0.8965
  # Final valid prob (xent)       -0.9964
  
  # steps/info/chain_dir_info.pl exp/chain/tdnn_1a_sp/
  # exp/chain/tdnn_1a_sp/: num-iters=441 nj=3..16 num-params=18.6M dim=40+100->5816 combine=-0.063->-0.062 (over 6) xent:train/valid[293,440,final]=(-1.22,-0.912,-0.896/-1.29,-1.01,-0.996) logprob:train/valid[293,440,final]=(-0.097,-0.066,-0.065/-0.108,-0.084,-0.083)
  
  
  set -e -o pipefail
  stage=0
  nj=30
  train_set=train
  test_set=test
  gmm=tri3b        # this is the source gmm-dir that we'll use for alignments; it
                   # should have alignments for the specified training data.
  num_threads_ubm=32
  nnet3_affix=       # affix for exp dirs, e.g. it was _cleaned in tedlium.
  
  # Options which are not passed through to run_ivector_common.sh
  affix=_1a   #affix for TDNN+LSTM directory e.g. "1a" or "1b", in case we change the configuration.
  common_egs_dir=
  reporting_email=
  
  # LSTM/chain options
  train_stage=-10
  xent_regularize=0.1
  dropout_schedule='0,0@0.20,0.5@0.50,0'
  
  # training chunk-options
  chunk_width=150,110,100
  get_egs_stage=-10
  
  # training options
  srand=0
  remove_egs=true
  run_ivector_common=true
  run_chain_common=true
  # End configuration section.
  echo "$0 $@"  # Print the command line for logging
  
  
  . ./cmd.sh
  . ./path.sh
  . ./utils/parse_options.sh
  
  
  if ! cuda-compiled; then
    cat <<EOF && exit 1
  This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
  If you want to use GPUs (and have them), go to src/, and configure and make on a machine
  where "nvcc" is installed.
  EOF
  fi
  
  if $run_ivector_common; then
    local/nnet3/run_ivector_common.sh \
      --stage $stage --nj $nj \
      --train-set $train_set --gmm $gmm \
      --num-threads-ubm $num_threads_ubm \
      --nnet3-affix "$nnet3_affix"
  fi
  
  gmm_dir=exp/${gmm}
  ali_dir=exp/${gmm}_ali_${train_set}_sp
  lat_dir=exp/chain${nnet3_affix}/${gmm}_${train_set}_sp_lats
  dir=exp/chain${nnet3_affix}/tdnn${affix}_sp
  train_data_dir=data/${train_set}_sp_hires
  train_ivector_dir=exp/nnet3${nnet3_affix}/ivectors_${train_set}_sp_hires
  lores_train_data_dir=data/${train_set}_sp
  
  # note: you don't necessarily have to change the treedir name
  # each time you do a new experiment-- only if you change the
  # configuration in a way that affects the tree.
  tree_dir=exp/chain${nnet3_affix}/tree_a_sp
  # the 'lang' directory is created by this script.
  # If you create such a directory with a non-standard topology
  # you should probably name it differently.
  lang=data/lang_chain
  
  for f in $train_data_dir/feats.scp $train_ivector_dir/ivector_online.scp \
      $lores_train_data_dir/feats.scp $gmm_dir/final.mdl \
      $ali_dir/ali.1.gz $gmm_dir/final.mdl; do
    [ ! -f $f ] && echo "$0: expected file $f to exist" && exit 1
  done
  
  # Please take this as a reference on how to specify all the options of
  # local/chain/run_chain_common.sh
  if $run_chain_common; then
    local/chain/run_chain_common.sh --stage $stage \
                                    --gmm-dir $gmm_dir \
                                    --ali-dir $ali_dir \
                                    --lores-train-data-dir ${lores_train_data_dir} \
                                    --lang $lang \
                                    --lat-dir $lat_dir \
                                    --num-leaves 7000 \
                                    --tree-dir $tree_dir || exit 1;
  fi
  
  if [ $stage -le 15 ]; then
    mkdir -p $dir
    echo "$0: creating neural net configs using the xconfig parser";
  
    num_targets=$(tree-info $tree_dir/tree |grep num-pdfs|awk '{print $2}')
    learning_rate_factor=$(echo "print (0.5/$xent_regularize)" | python)
    affine_opts="l2-regularize=0.01 dropout-proportion=0.0 dropout-per-dim=true dropout-per-dim-continuous=true"
    tdnnf_opts="l2-regularize=0.01 dropout-proportion=0.0 bypass-scale=0.66"
    linear_opts="l2-regularize=0.01 orthonormal-constraint=-1.0"
    prefinal_opts="l2-regularize=0.01"
    output_opts="l2-regularize=0.002"
  
    mkdir -p $dir/configs
  
    cat <<EOF > $dir/configs/network.xconfig
    input dim=100 name=ivector
    input dim=40 name=input
    # please note that it is important to have input layer with the name=input
    # as the layer immediately preceding the fixed-affine-layer to enable
    # the use of short notation for the descriptor
    fixed-affine-layer name=lda input=Append(-1,0,1,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat
    # the first splicing is moved before the lda layer, so no splicing here
    relu-batchnorm-dropout-layer name=tdnn1 $affine_opts dim=1536
    tdnnf-layer name=tdnnf2 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=1
    tdnnf-layer name=tdnnf3 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=1
    tdnnf-layer name=tdnnf4 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=1
    tdnnf-layer name=tdnnf5 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=0
    tdnnf-layer name=tdnnf6 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
    tdnnf-layer name=tdnnf7 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
    tdnnf-layer name=tdnnf8 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
    tdnnf-layer name=tdnnf9 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
    tdnnf-layer name=tdnnf10 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
    tdnnf-layer name=tdnnf11 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
    tdnnf-layer name=tdnnf12 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
    tdnnf-layer name=tdnnf13 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
    tdnnf-layer name=tdnnf14 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
    tdnnf-layer name=tdnnf15 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
    linear-component name=prefinal-l dim=256 $linear_opts
    prefinal-layer name=prefinal-chain input=prefinal-l $prefinal_opts big-dim=1536 small-dim=256
    output-layer name=output include-log-softmax=false dim=$num_targets $output_opts
    prefinal-layer name=prefinal-xent input=prefinal-l $prefinal_opts big-dim=1536 small-dim=256
    output-layer name=output-xent dim=$num_targets learning-rate-factor=$learning_rate_factor $output_opts
  EOF
    steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/
  fi
  
  
  if [ $stage -le 16 ]; then
    if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
      utils/create_split_dir.pl \
       /export/b0{3,4,5,6}/$USER/kaldi-data/egs/wsj-$(date +'%m_%d_%H_%M')/s5/$dir/egs/storage $dir/egs/storage
    fi
  
    steps/nnet3/chain/train.py --stage $train_stage \
      --cmd "$decode_cmd" \
      --feat.online-ivector-dir $train_ivector_dir \
      --feat.cmvn-opts "--norm-means=false --norm-vars=false" \
      --chain.xent-regularize $xent_regularize \
      --chain.leaky-hmm-coefficient 0.1 \
      --chain.l2-regularize 0.0 \
      --chain.apply-deriv-weights false \
      --chain.lm-opts="--num-extra-lm-states=2000" \
      --trainer.dropout-schedule $dropout_schedule \
      --trainer.srand=$srand \
      --trainer.max-param-change=2.0 \
      --trainer.num-epochs 6 \
      --trainer.frames-per-iter 1500000 \
      --trainer.optimization.num-jobs-initial 3 \
      --trainer.optimization.num-jobs-final 16 \
      --trainer.optimization.initial-effective-lrate 0.00025 \
      --trainer.optimization.final-effective-lrate 0.000025 \
      --trainer.num-chunk-per-minibatch=64,32 \
      --trainer.add-option="--optimization.memory-compression-level=2" \
      --egs.chunk-width=$chunk_width \
      --egs.dir="$common_egs_dir" \
      --egs.opts "--frames-overlap-per-eg 0 --constrained false" \
      --egs.stage $get_egs_stage \
      --reporting.email="$reporting_email" \
      --cleanup.remove-egs=$remove_egs \
      --feat-dir=$train_data_dir \
      --tree-dir $tree_dir \
      --lat-dir=$lat_dir \
      --dir $dir  || exit 1;
  
  fi
  
  if [ $stage -le 17 ]; then
    # The reason we are using data/lang here, instead of $lang, is just to
    # emphasize that it's not actually important to give mkgraph.sh the
    # lang directory with the matched topology (since it gets the
    # topology file from the model).  So you could give it a different
    # lang directory, one that contained a wordlist and LM of your choice,
    # as long as phones.txt was compatible.
  
    utils/lang/check_phones_compatible.sh \
      data/lang_test/phones.txt $lang/phones.txt
    utils/mkgraph.sh \
      --self-loop-scale 1.0 data/lang_test \
      $tree_dir $tree_dir/graph || exit 1;
  fi
  
  if [ $stage -le 18 ]; then
    frames_per_chunk=$(echo $chunk_width | cut -d, -f1)
    rm $dir/.error 2>/dev/null || true
  
      steps/nnet3/decode.sh \
        --acwt 1.0 --post-decode-acwt 10.0 \
        --extra-left-context 0 --extra-right-context 0 \
        --extra-left-context-initial 0 \
        --extra-right-context-final 0 \
        --frames-per-chunk $frames_per_chunk \
        --nj $nj --cmd "$decode_cmd"  --num-threads 4 \
        --online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_${test_set}_hires \
        $tree_dir/graph data/${test_set}_hires ${dir}/decode_${test_set} || exit 1
  fi