Blame view
egs/gale_arabic/s5b/local/chain/tuning/run_tdnn_1a.sh
8.97 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
#!/bin/bash # ./local/chain/compare_wer.sh exp/chain/tdnn_1a_sp # System tdnn_1a_sp # WER 16.47 # CER 6.68 # Final train prob -0.0652 # Final valid prob -0.0831 # Final train prob (xent) -0.8965 # Final valid prob (xent) -0.9964 # steps/info/chain_dir_info.pl exp/chain/tdnn_1a_sp/ # exp/chain/tdnn_1a_sp/: num-iters=441 nj=3..16 num-params=18.6M dim=40+100->5816 combine=-0.063->-0.062 (over 6) xent:train/valid[293,440,final]=(-1.22,-0.912,-0.896/-1.29,-1.01,-0.996) logprob:train/valid[293,440,final]=(-0.097,-0.066,-0.065/-0.108,-0.084,-0.083) set -e -o pipefail stage=0 nj=30 train_set=train test_set=test gmm=tri3b # this is the source gmm-dir that we'll use for alignments; it # should have alignments for the specified training data. num_threads_ubm=32 nnet3_affix= # affix for exp dirs, e.g. it was _cleaned in tedlium. # Options which are not passed through to run_ivector_common.sh affix=_1a #affix for TDNN+LSTM directory e.g. "1a" or "1b", in case we change the configuration. common_egs_dir= reporting_email= # LSTM/chain options train_stage=-10 xent_regularize=0.1 dropout_schedule='0,0@0.20,0.5@0.50,0' # training chunk-options chunk_width=150,110,100 get_egs_stage=-10 # training options srand=0 remove_egs=true run_ivector_common=true run_chain_common=true # End configuration section. echo "$0 $@" # Print the command line for logging . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF fi if $run_ivector_common; then local/nnet3/run_ivector_common.sh \ --stage $stage --nj $nj \ --train-set $train_set --gmm $gmm \ --num-threads-ubm $num_threads_ubm \ --nnet3-affix "$nnet3_affix" fi gmm_dir=exp/${gmm} ali_dir=exp/${gmm}_ali_${train_set}_sp lat_dir=exp/chain${nnet3_affix}/${gmm}_${train_set}_sp_lats dir=exp/chain${nnet3_affix}/tdnn${affix}_sp train_data_dir=data/${train_set}_sp_hires train_ivector_dir=exp/nnet3${nnet3_affix}/ivectors_${train_set}_sp_hires lores_train_data_dir=data/${train_set}_sp # note: you don't necessarily have to change the treedir name # each time you do a new experiment-- only if you change the # configuration in a way that affects the tree. tree_dir=exp/chain${nnet3_affix}/tree_a_sp # the 'lang' directory is created by this script. # If you create such a directory with a non-standard topology # you should probably name it differently. lang=data/lang_chain for f in $train_data_dir/feats.scp $train_ivector_dir/ivector_online.scp \ $lores_train_data_dir/feats.scp $gmm_dir/final.mdl \ $ali_dir/ali.1.gz $gmm_dir/final.mdl; do [ ! -f $f ] && echo "$0: expected file $f to exist" && exit 1 done # Please take this as a reference on how to specify all the options of # local/chain/run_chain_common.sh if $run_chain_common; then local/chain/run_chain_common.sh --stage $stage \ --gmm-dir $gmm_dir \ --ali-dir $ali_dir \ --lores-train-data-dir ${lores_train_data_dir} \ --lang $lang \ --lat-dir $lat_dir \ --num-leaves 7000 \ --tree-dir $tree_dir || exit 1; fi if [ $stage -le 15 ]; then mkdir -p $dir echo "$0: creating neural net configs using the xconfig parser"; num_targets=$(tree-info $tree_dir/tree |grep num-pdfs|awk '{print $2}') learning_rate_factor=$(echo "print (0.5/$xent_regularize)" | python) affine_opts="l2-regularize=0.01 dropout-proportion=0.0 dropout-per-dim=true dropout-per-dim-continuous=true" tdnnf_opts="l2-regularize=0.01 dropout-proportion=0.0 bypass-scale=0.66" linear_opts="l2-regularize=0.01 orthonormal-constraint=-1.0" prefinal_opts="l2-regularize=0.01" output_opts="l2-regularize=0.002" mkdir -p $dir/configs cat <<EOF > $dir/configs/network.xconfig input dim=100 name=ivector input dim=40 name=input # please note that it is important to have input layer with the name=input # as the layer immediately preceding the fixed-affine-layer to enable # the use of short notation for the descriptor fixed-affine-layer name=lda input=Append(-1,0,1,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat # the first splicing is moved before the lda layer, so no splicing here relu-batchnorm-dropout-layer name=tdnn1 $affine_opts dim=1536 tdnnf-layer name=tdnnf2 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=1 tdnnf-layer name=tdnnf3 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=1 tdnnf-layer name=tdnnf4 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=1 tdnnf-layer name=tdnnf5 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=0 tdnnf-layer name=tdnnf6 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 tdnnf-layer name=tdnnf7 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 tdnnf-layer name=tdnnf8 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 tdnnf-layer name=tdnnf9 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 tdnnf-layer name=tdnnf10 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 tdnnf-layer name=tdnnf11 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 tdnnf-layer name=tdnnf12 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 tdnnf-layer name=tdnnf13 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 tdnnf-layer name=tdnnf14 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 tdnnf-layer name=tdnnf15 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 linear-component name=prefinal-l dim=256 $linear_opts prefinal-layer name=prefinal-chain input=prefinal-l $prefinal_opts big-dim=1536 small-dim=256 output-layer name=output include-log-softmax=false dim=$num_targets $output_opts prefinal-layer name=prefinal-xent input=prefinal-l $prefinal_opts big-dim=1536 small-dim=256 output-layer name=output-xent dim=$num_targets learning-rate-factor=$learning_rate_factor $output_opts EOF steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/ fi if [ $stage -le 16 ]; then if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then utils/create_split_dir.pl \ /export/b0{3,4,5,6}/$USER/kaldi-data/egs/wsj-$(date +'%m_%d_%H_%M')/s5/$dir/egs/storage $dir/egs/storage fi steps/nnet3/chain/train.py --stage $train_stage \ --cmd "$decode_cmd" \ --feat.online-ivector-dir $train_ivector_dir \ --feat.cmvn-opts "--norm-means=false --norm-vars=false" \ --chain.xent-regularize $xent_regularize \ --chain.leaky-hmm-coefficient 0.1 \ --chain.l2-regularize 0.0 \ --chain.apply-deriv-weights false \ --chain.lm-opts="--num-extra-lm-states=2000" \ --trainer.dropout-schedule $dropout_schedule \ --trainer.srand=$srand \ --trainer.max-param-change=2.0 \ --trainer.num-epochs 6 \ --trainer.frames-per-iter 1500000 \ --trainer.optimization.num-jobs-initial 3 \ --trainer.optimization.num-jobs-final 16 \ --trainer.optimization.initial-effective-lrate 0.00025 \ --trainer.optimization.final-effective-lrate 0.000025 \ --trainer.num-chunk-per-minibatch=64,32 \ --trainer.add-option="--optimization.memory-compression-level=2" \ --egs.chunk-width=$chunk_width \ --egs.dir="$common_egs_dir" \ --egs.opts "--frames-overlap-per-eg 0 --constrained false" \ --egs.stage $get_egs_stage \ --reporting.email="$reporting_email" \ --cleanup.remove-egs=$remove_egs \ --feat-dir=$train_data_dir \ --tree-dir $tree_dir \ --lat-dir=$lat_dir \ --dir $dir || exit 1; fi if [ $stage -le 17 ]; then # The reason we are using data/lang here, instead of $lang, is just to # emphasize that it's not actually important to give mkgraph.sh the # lang directory with the matched topology (since it gets the # topology file from the model). So you could give it a different # lang directory, one that contained a wordlist and LM of your choice, # as long as phones.txt was compatible. utils/lang/check_phones_compatible.sh \ data/lang_test/phones.txt $lang/phones.txt utils/mkgraph.sh \ --self-loop-scale 1.0 data/lang_test \ $tree_dir $tree_dir/graph || exit 1; fi if [ $stage -le 18 ]; then frames_per_chunk=$(echo $chunk_width | cut -d, -f1) rm $dir/.error 2>/dev/null || true steps/nnet3/decode.sh \ --acwt 1.0 --post-decode-acwt 10.0 \ --extra-left-context 0 --extra-right-context 0 \ --extra-left-context-initial 0 \ --extra-right-context-final 0 \ --frames-per-chunk $frames_per_chunk \ --nj $nj --cmd "$decode_cmd" --num-threads 4 \ --online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_${test_set}_hires \ $tree_dir/graph data/${test_set}_hires ${dir}/decode_${test_set} || exit 1 fi |