run_tdnn_1a.sh 8.97 KB
#!/bin/bash

# ./local/chain/compare_wer.sh exp/chain/tdnn_1a_sp
# System                      tdnn_1a_sp
# WER                             16.47
# CER                              6.68
# Final train prob              -0.0652
# Final valid prob              -0.0831
# Final train prob (xent)       -0.8965
# Final valid prob (xent)       -0.9964

# steps/info/chain_dir_info.pl exp/chain/tdnn_1a_sp/
# exp/chain/tdnn_1a_sp/: num-iters=441 nj=3..16 num-params=18.6M dim=40+100->5816 combine=-0.063->-0.062 (over 6) xent:train/valid[293,440,final]=(-1.22,-0.912,-0.896/-1.29,-1.01,-0.996) logprob:train/valid[293,440,final]=(-0.097,-0.066,-0.065/-0.108,-0.084,-0.083)


set -e -o pipefail
stage=0
nj=30
train_set=train
test_set=test
gmm=tri3b        # this is the source gmm-dir that we'll use for alignments; it
                 # should have alignments for the specified training data.
num_threads_ubm=32
nnet3_affix=       # affix for exp dirs, e.g. it was _cleaned in tedlium.

# Options which are not passed through to run_ivector_common.sh
affix=_1a   #affix for TDNN+LSTM directory e.g. "1a" or "1b", in case we change the configuration.
common_egs_dir=
reporting_email=

# LSTM/chain options
train_stage=-10
xent_regularize=0.1
dropout_schedule='0,0@0.20,0.5@0.50,0'

# training chunk-options
chunk_width=150,110,100
get_egs_stage=-10

# training options
srand=0
remove_egs=true
run_ivector_common=true
run_chain_common=true
# End configuration section.
echo "$0 $@"  # Print the command line for logging


. ./cmd.sh
. ./path.sh
. ./utils/parse_options.sh


if ! cuda-compiled; then
  cat <<EOF && exit 1
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
If you want to use GPUs (and have them), go to src/, and configure and make on a machine
where "nvcc" is installed.
EOF
fi

if $run_ivector_common; then
  local/nnet3/run_ivector_common.sh \
    --stage $stage --nj $nj \
    --train-set $train_set --gmm $gmm \
    --num-threads-ubm $num_threads_ubm \
    --nnet3-affix "$nnet3_affix"
fi

gmm_dir=exp/${gmm}
ali_dir=exp/${gmm}_ali_${train_set}_sp
lat_dir=exp/chain${nnet3_affix}/${gmm}_${train_set}_sp_lats
dir=exp/chain${nnet3_affix}/tdnn${affix}_sp
train_data_dir=data/${train_set}_sp_hires
train_ivector_dir=exp/nnet3${nnet3_affix}/ivectors_${train_set}_sp_hires
lores_train_data_dir=data/${train_set}_sp

# note: you don't necessarily have to change the treedir name
# each time you do a new experiment-- only if you change the
# configuration in a way that affects the tree.
tree_dir=exp/chain${nnet3_affix}/tree_a_sp
# the 'lang' directory is created by this script.
# If you create such a directory with a non-standard topology
# you should probably name it differently.
lang=data/lang_chain

for f in $train_data_dir/feats.scp $train_ivector_dir/ivector_online.scp \
    $lores_train_data_dir/feats.scp $gmm_dir/final.mdl \
    $ali_dir/ali.1.gz $gmm_dir/final.mdl; do
  [ ! -f $f ] && echo "$0: expected file $f to exist" && exit 1
done

# Please take this as a reference on how to specify all the options of
# local/chain/run_chain_common.sh
if $run_chain_common; then
  local/chain/run_chain_common.sh --stage $stage \
                                  --gmm-dir $gmm_dir \
                                  --ali-dir $ali_dir \
                                  --lores-train-data-dir ${lores_train_data_dir} \
                                  --lang $lang \
                                  --lat-dir $lat_dir \
                                  --num-leaves 7000 \
                                  --tree-dir $tree_dir || exit 1;
fi

if [ $stage -le 15 ]; then
  mkdir -p $dir
  echo "$0: creating neural net configs using the xconfig parser";

  num_targets=$(tree-info $tree_dir/tree |grep num-pdfs|awk '{print $2}')
  learning_rate_factor=$(echo "print (0.5/$xent_regularize)" | python)
  affine_opts="l2-regularize=0.01 dropout-proportion=0.0 dropout-per-dim=true dropout-per-dim-continuous=true"
  tdnnf_opts="l2-regularize=0.01 dropout-proportion=0.0 bypass-scale=0.66"
  linear_opts="l2-regularize=0.01 orthonormal-constraint=-1.0"
  prefinal_opts="l2-regularize=0.01"
  output_opts="l2-regularize=0.002"

  mkdir -p $dir/configs

  cat <<EOF > $dir/configs/network.xconfig
  input dim=100 name=ivector
  input dim=40 name=input
  # please note that it is important to have input layer with the name=input
  # as the layer immediately preceding the fixed-affine-layer to enable
  # the use of short notation for the descriptor
  fixed-affine-layer name=lda input=Append(-1,0,1,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat
  # the first splicing is moved before the lda layer, so no splicing here
  relu-batchnorm-dropout-layer name=tdnn1 $affine_opts dim=1536
  tdnnf-layer name=tdnnf2 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=1
  tdnnf-layer name=tdnnf3 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=1
  tdnnf-layer name=tdnnf4 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=1
  tdnnf-layer name=tdnnf5 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=0
  tdnnf-layer name=tdnnf6 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
  tdnnf-layer name=tdnnf7 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
  tdnnf-layer name=tdnnf8 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
  tdnnf-layer name=tdnnf9 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
  tdnnf-layer name=tdnnf10 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
  tdnnf-layer name=tdnnf11 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
  tdnnf-layer name=tdnnf12 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
  tdnnf-layer name=tdnnf13 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
  tdnnf-layer name=tdnnf14 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
  tdnnf-layer name=tdnnf15 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
  linear-component name=prefinal-l dim=256 $linear_opts
  prefinal-layer name=prefinal-chain input=prefinal-l $prefinal_opts big-dim=1536 small-dim=256
  output-layer name=output include-log-softmax=false dim=$num_targets $output_opts
  prefinal-layer name=prefinal-xent input=prefinal-l $prefinal_opts big-dim=1536 small-dim=256
  output-layer name=output-xent dim=$num_targets learning-rate-factor=$learning_rate_factor $output_opts
EOF
  steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/
fi


if [ $stage -le 16 ]; then
  if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
    utils/create_split_dir.pl \
     /export/b0{3,4,5,6}/$USER/kaldi-data/egs/wsj-$(date +'%m_%d_%H_%M')/s5/$dir/egs/storage $dir/egs/storage
  fi

  steps/nnet3/chain/train.py --stage $train_stage \
    --cmd "$decode_cmd" \
    --feat.online-ivector-dir $train_ivector_dir \
    --feat.cmvn-opts "--norm-means=false --norm-vars=false" \
    --chain.xent-regularize $xent_regularize \
    --chain.leaky-hmm-coefficient 0.1 \
    --chain.l2-regularize 0.0 \
    --chain.apply-deriv-weights false \
    --chain.lm-opts="--num-extra-lm-states=2000" \
    --trainer.dropout-schedule $dropout_schedule \
    --trainer.srand=$srand \
    --trainer.max-param-change=2.0 \
    --trainer.num-epochs 6 \
    --trainer.frames-per-iter 1500000 \
    --trainer.optimization.num-jobs-initial 3 \
    --trainer.optimization.num-jobs-final 16 \
    --trainer.optimization.initial-effective-lrate 0.00025 \
    --trainer.optimization.final-effective-lrate 0.000025 \
    --trainer.num-chunk-per-minibatch=64,32 \
    --trainer.add-option="--optimization.memory-compression-level=2" \
    --egs.chunk-width=$chunk_width \
    --egs.dir="$common_egs_dir" \
    --egs.opts "--frames-overlap-per-eg 0 --constrained false" \
    --egs.stage $get_egs_stage \
    --reporting.email="$reporting_email" \
    --cleanup.remove-egs=$remove_egs \
    --feat-dir=$train_data_dir \
    --tree-dir $tree_dir \
    --lat-dir=$lat_dir \
    --dir $dir  || exit 1;

fi

if [ $stage -le 17 ]; then
  # The reason we are using data/lang here, instead of $lang, is just to
  # emphasize that it's not actually important to give mkgraph.sh the
  # lang directory with the matched topology (since it gets the
  # topology file from the model).  So you could give it a different
  # lang directory, one that contained a wordlist and LM of your choice,
  # as long as phones.txt was compatible.

  utils/lang/check_phones_compatible.sh \
    data/lang_test/phones.txt $lang/phones.txt
  utils/mkgraph.sh \
    --self-loop-scale 1.0 data/lang_test \
    $tree_dir $tree_dir/graph || exit 1;
fi

if [ $stage -le 18 ]; then
  frames_per_chunk=$(echo $chunk_width | cut -d, -f1)
  rm $dir/.error 2>/dev/null || true

    steps/nnet3/decode.sh \
      --acwt 1.0 --post-decode-acwt 10.0 \
      --extra-left-context 0 --extra-right-context 0 \
      --extra-left-context-initial 0 \
      --extra-right-context-final 0 \
      --frames-per-chunk $frames_per_chunk \
      --nj $nj --cmd "$decode_cmd"  --num-threads 4 \
      --online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_${test_set}_hires \
      $tree_dir/graph data/${test_set}_hires ${dir}/decode_${test_set} || exit 1
fi