run_tdnn_1a.sh
8.97 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
#!/bin/bash
# ./local/chain/compare_wer.sh exp/chain/tdnn_1a_sp
# System tdnn_1a_sp
# WER 16.47
# CER 6.68
# Final train prob -0.0652
# Final valid prob -0.0831
# Final train prob (xent) -0.8965
# Final valid prob (xent) -0.9964
# steps/info/chain_dir_info.pl exp/chain/tdnn_1a_sp/
# exp/chain/tdnn_1a_sp/: num-iters=441 nj=3..16 num-params=18.6M dim=40+100->5816 combine=-0.063->-0.062 (over 6) xent:train/valid[293,440,final]=(-1.22,-0.912,-0.896/-1.29,-1.01,-0.996) logprob:train/valid[293,440,final]=(-0.097,-0.066,-0.065/-0.108,-0.084,-0.083)
set -e -o pipefail
stage=0
nj=30
train_set=train
test_set=test
gmm=tri3b # this is the source gmm-dir that we'll use for alignments; it
# should have alignments for the specified training data.
num_threads_ubm=32
nnet3_affix= # affix for exp dirs, e.g. it was _cleaned in tedlium.
# Options which are not passed through to run_ivector_common.sh
affix=_1a #affix for TDNN+LSTM directory e.g. "1a" or "1b", in case we change the configuration.
common_egs_dir=
reporting_email=
# LSTM/chain options
train_stage=-10
xent_regularize=0.1
dropout_schedule='0,0@0.20,0.5@0.50,0'
# training chunk-options
chunk_width=150,110,100
get_egs_stage=-10
# training options
srand=0
remove_egs=true
run_ivector_common=true
run_chain_common=true
# End configuration section.
echo "$0 $@" # Print the command line for logging
. ./cmd.sh
. ./path.sh
. ./utils/parse_options.sh
if ! cuda-compiled; then
cat <<EOF && exit 1
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
If you want to use GPUs (and have them), go to src/, and configure and make on a machine
where "nvcc" is installed.
EOF
fi
if $run_ivector_common; then
local/nnet3/run_ivector_common.sh \
--stage $stage --nj $nj \
--train-set $train_set --gmm $gmm \
--num-threads-ubm $num_threads_ubm \
--nnet3-affix "$nnet3_affix"
fi
gmm_dir=exp/${gmm}
ali_dir=exp/${gmm}_ali_${train_set}_sp
lat_dir=exp/chain${nnet3_affix}/${gmm}_${train_set}_sp_lats
dir=exp/chain${nnet3_affix}/tdnn${affix}_sp
train_data_dir=data/${train_set}_sp_hires
train_ivector_dir=exp/nnet3${nnet3_affix}/ivectors_${train_set}_sp_hires
lores_train_data_dir=data/${train_set}_sp
# note: you don't necessarily have to change the treedir name
# each time you do a new experiment-- only if you change the
# configuration in a way that affects the tree.
tree_dir=exp/chain${nnet3_affix}/tree_a_sp
# the 'lang' directory is created by this script.
# If you create such a directory with a non-standard topology
# you should probably name it differently.
lang=data/lang_chain
for f in $train_data_dir/feats.scp $train_ivector_dir/ivector_online.scp \
$lores_train_data_dir/feats.scp $gmm_dir/final.mdl \
$ali_dir/ali.1.gz $gmm_dir/final.mdl; do
[ ! -f $f ] && echo "$0: expected file $f to exist" && exit 1
done
# Please take this as a reference on how to specify all the options of
# local/chain/run_chain_common.sh
if $run_chain_common; then
local/chain/run_chain_common.sh --stage $stage \
--gmm-dir $gmm_dir \
--ali-dir $ali_dir \
--lores-train-data-dir ${lores_train_data_dir} \
--lang $lang \
--lat-dir $lat_dir \
--num-leaves 7000 \
--tree-dir $tree_dir || exit 1;
fi
if [ $stage -le 15 ]; then
mkdir -p $dir
echo "$0: creating neural net configs using the xconfig parser";
num_targets=$(tree-info $tree_dir/tree |grep num-pdfs|awk '{print $2}')
learning_rate_factor=$(echo "print (0.5/$xent_regularize)" | python)
affine_opts="l2-regularize=0.01 dropout-proportion=0.0 dropout-per-dim=true dropout-per-dim-continuous=true"
tdnnf_opts="l2-regularize=0.01 dropout-proportion=0.0 bypass-scale=0.66"
linear_opts="l2-regularize=0.01 orthonormal-constraint=-1.0"
prefinal_opts="l2-regularize=0.01"
output_opts="l2-regularize=0.002"
mkdir -p $dir/configs
cat <<EOF > $dir/configs/network.xconfig
input dim=100 name=ivector
input dim=40 name=input
# please note that it is important to have input layer with the name=input
# as the layer immediately preceding the fixed-affine-layer to enable
# the use of short notation for the descriptor
fixed-affine-layer name=lda input=Append(-1,0,1,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat
# the first splicing is moved before the lda layer, so no splicing here
relu-batchnorm-dropout-layer name=tdnn1 $affine_opts dim=1536
tdnnf-layer name=tdnnf2 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=1
tdnnf-layer name=tdnnf3 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=1
tdnnf-layer name=tdnnf4 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=1
tdnnf-layer name=tdnnf5 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=0
tdnnf-layer name=tdnnf6 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
tdnnf-layer name=tdnnf7 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
tdnnf-layer name=tdnnf8 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
tdnnf-layer name=tdnnf9 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
tdnnf-layer name=tdnnf10 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
tdnnf-layer name=tdnnf11 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
tdnnf-layer name=tdnnf12 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
tdnnf-layer name=tdnnf13 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
tdnnf-layer name=tdnnf14 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
tdnnf-layer name=tdnnf15 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
linear-component name=prefinal-l dim=256 $linear_opts
prefinal-layer name=prefinal-chain input=prefinal-l $prefinal_opts big-dim=1536 small-dim=256
output-layer name=output include-log-softmax=false dim=$num_targets $output_opts
prefinal-layer name=prefinal-xent input=prefinal-l $prefinal_opts big-dim=1536 small-dim=256
output-layer name=output-xent dim=$num_targets learning-rate-factor=$learning_rate_factor $output_opts
EOF
steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/
fi
if [ $stage -le 16 ]; then
if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
utils/create_split_dir.pl \
/export/b0{3,4,5,6}/$USER/kaldi-data/egs/wsj-$(date +'%m_%d_%H_%M')/s5/$dir/egs/storage $dir/egs/storage
fi
steps/nnet3/chain/train.py --stage $train_stage \
--cmd "$decode_cmd" \
--feat.online-ivector-dir $train_ivector_dir \
--feat.cmvn-opts "--norm-means=false --norm-vars=false" \
--chain.xent-regularize $xent_regularize \
--chain.leaky-hmm-coefficient 0.1 \
--chain.l2-regularize 0.0 \
--chain.apply-deriv-weights false \
--chain.lm-opts="--num-extra-lm-states=2000" \
--trainer.dropout-schedule $dropout_schedule \
--trainer.srand=$srand \
--trainer.max-param-change=2.0 \
--trainer.num-epochs 6 \
--trainer.frames-per-iter 1500000 \
--trainer.optimization.num-jobs-initial 3 \
--trainer.optimization.num-jobs-final 16 \
--trainer.optimization.initial-effective-lrate 0.00025 \
--trainer.optimization.final-effective-lrate 0.000025 \
--trainer.num-chunk-per-minibatch=64,32 \
--trainer.add-option="--optimization.memory-compression-level=2" \
--egs.chunk-width=$chunk_width \
--egs.dir="$common_egs_dir" \
--egs.opts "--frames-overlap-per-eg 0 --constrained false" \
--egs.stage $get_egs_stage \
--reporting.email="$reporting_email" \
--cleanup.remove-egs=$remove_egs \
--feat-dir=$train_data_dir \
--tree-dir $tree_dir \
--lat-dir=$lat_dir \
--dir $dir || exit 1;
fi
if [ $stage -le 17 ]; then
# The reason we are using data/lang here, instead of $lang, is just to
# emphasize that it's not actually important to give mkgraph.sh the
# lang directory with the matched topology (since it gets the
# topology file from the model). So you could give it a different
# lang directory, one that contained a wordlist and LM of your choice,
# as long as phones.txt was compatible.
utils/lang/check_phones_compatible.sh \
data/lang_test/phones.txt $lang/phones.txt
utils/mkgraph.sh \
--self-loop-scale 1.0 data/lang_test \
$tree_dir $tree_dir/graph || exit 1;
fi
if [ $stage -le 18 ]; then
frames_per_chunk=$(echo $chunk_width | cut -d, -f1)
rm $dir/.error 2>/dev/null || true
steps/nnet3/decode.sh \
--acwt 1.0 --post-decode-acwt 10.0 \
--extra-left-context 0 --extra-right-context 0 \
--extra-left-context-initial 0 \
--extra-right-context-final 0 \
--frames-per-chunk $frames_per_chunk \
--nj $nj --cmd "$decode_cmd" --num-threads 4 \
--online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_${test_set}_hires \
$tree_dir/graph data/${test_set}_hires ${dir}/decode_${test_set} || exit 1
fi