Blame view
egs/gale_mandarin/s5/run.sh
7.67 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
#!/bin/bash # Copyright 2014 (author: Hainan Xu, Ahmed Ali) # Apache 2.0 . ./path.sh . ./cmd.sh num_jobs=64 num_jobs_decode=128 AUDIO=( /export/corpora/LDC/LDC2013S08/ /export/corpora/LDC/LDC2013S04/ /export/corpora/LDC/LDC2014S09/ /export/corpora/LDC/LDC2015S06/ /export/corpora/LDC/LDC2015S13/ /export/corpora/LDC/LDC2016S03/ ) TEXT=( /export/corpora/LDC/LDC2013T20/ /export/corpora/LDC/LDC2013T08/ /export/corpora/LDC/LDC2014T28/ /export/corpora/LDC/LDC2015T09/ /export/corpora/LDC/LDC2015T25/ /export/corpora/LDC/LDC2016T12/ ) galeData=GALE/ # You can run the script from here automatically, but it is recommended to run the data preparation, # and features extraction manually and and only once. # By copying and pasting into the shell. set -e -o pipefail set -x local/gale_data_prep_audio.sh "${AUDIO[@]}" $galeData local/gale_data_prep_txt.sh "${TEXT[@]}" $galeData local/gale_data_prep_split.sh $galeData local/gale_prep_dict.sh utils/prepare_lang.sh data/local/dict "<UNK>" data/local/lang data/lang local/gale_train_lms.sh local/gale_format_data.sh # Now make MFCC features. # mfccdir should be some place with a largish disk where you # want to store MFCC features. mfccdir=mfcc # spread the mfccs over various machines, as this data-set is quite large. if [[ $(hostname -f) == *.clsp.jhu.edu ]]; then mfcc=$(basename $mfccdir) # in case was absolute pathname (unlikely), get basename. utils/create_split_dir.pl /export/b{05,06,07,08}/$USER/kaldi-data/egs/gale_mandarin/s5/$mfcc/storage \ $mfccdir/storage fi for x in train dev ; do utils/fix_data_dir.sh data/$x steps/make_mfcc_pitch.sh --cmd "$train_cmd" --nj $num_jobs \ data/$x exp/make_mfcc/$x $mfccdir utils/fix_data_dir.sh data/$x # some files fail to get mfcc for many reasons steps/compute_cmvn_stats.sh data/$x exp/make_mfcc/$x $mfccdir done # Let's create a subset with 10k segments to make quick flat-start training: utils/subset_data_dir.sh data/train 10000 data/train.10k || exit 1; utils/subset_data_dir.sh data/train 50000 data/train.50k || exit 1; utils/subset_data_dir.sh data/train 100000 data/train.100k || exit 1; # Train monophone models on a subset of the data, 10K segment # Note: the --boost-silence option should probably be omitted by default steps/train_mono.sh --nj 40 --cmd "$train_cmd" \ data/train.10k data/lang exp/mono || exit 1; # Get alignments from monophone system. steps/align_si.sh --nj $num_jobs --cmd "$train_cmd" \ data/train.50k data/lang exp/mono exp/mono_ali.50k || exit 1; # train tri1 [first triphone pass] steps/train_deltas.sh --cmd "$train_cmd" \ 2500 30000 data/train.50k data/lang exp/mono_ali.50k exp/tri1 || exit 1; # First triphone decoding utils/mkgraph.sh data/lang_test exp/tri1 exp/tri1/graph || exit 1; steps/decode.sh --nj $num_jobs_decode --cmd "$decode_cmd" \ exp/tri1/graph data/dev exp/tri1/decode & steps/align_si.sh --nj $num_jobs --cmd "$train_cmd" \ data/train data/lang exp/tri1 exp/tri1_ali || exit 1; # Train tri2a, which is deltas+delta+deltas steps/train_deltas.sh --cmd "$train_cmd" \ 3000 40000 data/train data/lang exp/tri1_ali exp/tri2a || exit 1; # tri2a decoding utils/mkgraph.sh data/lang_test exp/tri2a exp/tri2a/graph || exit 1; steps/decode.sh --nj $num_jobs_decode --cmd "$decode_cmd" \ exp/tri2a/graph data/dev exp/tri2a/decode & steps/align_si.sh --nj $num_jobs --cmd "$train_cmd" \ data/train data/lang exp/tri2a exp/tri2a_ali || exit 1; # train and decode tri2b [LDA+MLLT] steps/train_lda_mllt.sh --cmd "$train_cmd" 4000 50000 \ data/train data/lang exp/tri2a_ali exp/tri2b || exit 1; utils/mkgraph.sh data/lang_test exp/tri2b exp/tri2b/graph || exit 1; steps/decode.sh --nj $num_jobs_decode --cmd "$decode_cmd" exp/tri2b/graph data/dev exp/tri2b/decode & # Align all data with LDA+MLLT system (tri2b) steps/align_si.sh --nj $num_jobs --cmd "$train_cmd" \ --use-graphs true data/train data/lang exp/tri2b exp/tri2b_ali || exit 1; # Do MMI on top of LDA+MLLT. steps/make_denlats.sh --nj $num_jobs --cmd "$train_cmd" \ data/train data/lang exp/tri2b exp/tri2b_denlats || exit 1; steps/train_mmi.sh data/train data/lang exp/tri2b_ali \ exp/tri2b_denlats exp/tri2b_mmi steps/decode.sh --iter 4 --nj $num_jobs --cmd "$decode_cmd" exp/tri2b/graph \ data/dev exp/tri2b_mmi/decode_it4 & steps/decode.sh --iter 3 --nj $num_jobs --cmd "$decode_cmd" exp/tri2b/graph \ data/dev exp/tri2b_mmi/decode_it3 & # Do the same with boosting. steps/train_mmi.sh --boost 0.1 data/train data/lang exp/tri2b_ali \ exp/tri2b_denlats exp/tri2b_mmi_b0.1 steps/decode.sh --iter 4 --nj $num_jobs --cmd "$decode_cmd" exp/tri2b/graph \ data/dev exp/tri2b_mmi_b0.1/decode_it4 & steps/decode.sh --iter 3 --nj $num_jobs --cmd "$decode_cmd" exp/tri2b/graph \ data/dev exp/tri2b_mmi_b0.1/decode_it3 & # Do MPE. steps/train_mpe.sh data/train data/lang exp/tri2b_ali exp/tri2b_denlats exp/tri2b_mpe || exit 1; steps/decode.sh --iter 4 --nj $num_jobs_decode --cmd "$decode_cmd" exp/tri2b/graph \ data/dev exp/tri2b_mpe/decode_it4 & steps/decode.sh --iter 3 --nj $num_jobs_decode --cmd "$decode_cmd" exp/tri2b/graph \ data/dev exp/tri2b_mpe/decode_it3 & # From 2b system, train 3b which is LDA + MLLT + SAT. steps/train_sat.sh --cmd "$train_cmd" \ 5000 100000 data/train data/lang exp/tri2b_ali exp/tri3b || exit 1; utils/mkgraph.sh data/lang_test exp/tri3b exp/tri3b/graph|| exit 1; steps/decode_fmllr.sh --nj $num_jobs_decode --cmd "$decode_cmd" \ exp/tri3b/graph data/dev exp/tri3b/decode & # From 3b system, align all data. steps/align_fmllr.sh --nj $num_jobs --cmd "$train_cmd" \ data/train data/lang exp/tri3b exp/tri3b_ali || exit 1; ## SGMM (subspace gaussian mixture model), excluding the "speaker-dependent weights" steps/train_ubm.sh --cmd "$train_cmd" 700 \ data/train data/lang exp/tri3b_ali exp/ubm5a || exit 1; steps/train_sgmm2.sh --cmd "$train_cmd" 5000 20000 data/train data/lang exp/tri3b_ali \ exp/ubm5a/final.ubm exp/sgmm_5a || exit 1; utils/mkgraph.sh data/lang_test exp/sgmm_5a exp/sgmm_5a/graph || exit 1; steps/decode_sgmm2.sh --nj $num_jobs_decode --cmd "$decode_cmd" --config conf/decode.config \ --transform-dir exp/tri3b/decode exp/sgmm_5a/graph data/dev exp/sgmm_5a/decode & steps/align_sgmm2.sh --nj $num_jobs --cmd "$train_cmd" --transform-dir exp/tri3b_ali \ --use-graphs true --use-gselect true data/train data/lang exp/sgmm_5a exp/sgmm_5a_ali || exit 1; ## boosted MMI on SGMM steps/make_denlats_sgmm2.sh --nj $num_jobs --sub-split $num_jobs --beam 9.0 --lattice-beam 6 \ --cmd "$decode_cmd" --num-threads 4 --transform-dir exp/tri3b_ali \ data/train data/lang exp/sgmm_5a_ali exp/sgmm_5a_denlats || exit 1; steps/train_mmi_sgmm2.sh --cmd "$train_cmd" --num-iters 8 --transform-dir exp/tri3b_ali --boost 0.1 \ data/train data/lang exp/sgmm_5a exp/sgmm_5a_denlats exp/sgmm_5a_mmi_b0.1 #decode GMM MMI utils/mkgraph.sh data/lang_test exp/sgmm_5a_mmi_b0.1 exp/sgmm_5a_mmi_b0.1/graph || exit 1; steps/decode_sgmm2.sh --nj $num_jobs_decode --cmd "$decode_cmd" --config conf/decode.config \ --transform-dir exp/tri3b/decode exp/sgmm_5a_mmi_b0.1/graph data/dev exp/sgmm_5a_mmi_b0.1/decode for n in 1 2 3 4; do steps/decode_sgmm2_rescore.sh --cmd "$decode_cmd" --iter $n --transform-dir exp/tri3b/decode data/lang_test \ data/dev exp/sgmm_5a_mmi_b0.1/decode exp/sgmm_5a_mmi_b0.1/decode$n done wait #local/nnet/run_dnn.sh echo "# Get WER and CER" > RESULTS for x in exp/*/decode*; do [ -d $x ] && grep WER $x/wer_[0-9]* | utils/best_wer.sh; \ done | sort -n -r -k2 >> RESULTS echo "" >> RESULTS for x in exp/*/decode*; do [ -d $x ] && grep WER $x/cer_[0-9]* | utils/best_wer.sh; \ done | sort -n -r -k2 >> RESULTS echo -e " # Detailed WER on all corpus dev sets" >> RESULTS local/split_wer_per_corpus.sh $galeData >> RESULTS echo training succedded exit 0 |