run.sh
7.67 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#!/bin/bash
# Copyright 2014 (author: Hainan Xu, Ahmed Ali)
# Apache 2.0
. ./path.sh
. ./cmd.sh
num_jobs=64
num_jobs_decode=128
AUDIO=(
/export/corpora/LDC/LDC2013S08/
/export/corpora/LDC/LDC2013S04/
/export/corpora/LDC/LDC2014S09/
/export/corpora/LDC/LDC2015S06/
/export/corpora/LDC/LDC2015S13/
/export/corpora/LDC/LDC2016S03/
)
TEXT=(
/export/corpora/LDC/LDC2013T20/
/export/corpora/LDC/LDC2013T08/
/export/corpora/LDC/LDC2014T28/
/export/corpora/LDC/LDC2015T09/
/export/corpora/LDC/LDC2015T25/
/export/corpora/LDC/LDC2016T12/
)
galeData=GALE/
# You can run the script from here automatically, but it is recommended to run the data preparation,
# and features extraction manually and and only once.
# By copying and pasting into the shell.
set -e -o pipefail
set -x
local/gale_data_prep_audio.sh "${AUDIO[@]}" $galeData
local/gale_data_prep_txt.sh "${TEXT[@]}" $galeData
local/gale_data_prep_split.sh $galeData
local/gale_prep_dict.sh
utils/prepare_lang.sh data/local/dict "<UNK>" data/local/lang data/lang
local/gale_train_lms.sh
local/gale_format_data.sh
# Now make MFCC features.
# mfccdir should be some place with a largish disk where you
# want to store MFCC features.
mfccdir=mfcc
# spread the mfccs over various machines, as this data-set is quite large.
if [[ $(hostname -f) == *.clsp.jhu.edu ]]; then
mfcc=$(basename $mfccdir) # in case was absolute pathname (unlikely), get basename.
utils/create_split_dir.pl /export/b{05,06,07,08}/$USER/kaldi-data/egs/gale_mandarin/s5/$mfcc/storage \
$mfccdir/storage
fi
for x in train dev ; do
utils/fix_data_dir.sh data/$x
steps/make_mfcc_pitch.sh --cmd "$train_cmd" --nj $num_jobs \
data/$x exp/make_mfcc/$x $mfccdir
utils/fix_data_dir.sh data/$x # some files fail to get mfcc for many reasons
steps/compute_cmvn_stats.sh data/$x exp/make_mfcc/$x $mfccdir
done
# Let's create a subset with 10k segments to make quick flat-start training:
utils/subset_data_dir.sh data/train 10000 data/train.10k || exit 1;
utils/subset_data_dir.sh data/train 50000 data/train.50k || exit 1;
utils/subset_data_dir.sh data/train 100000 data/train.100k || exit 1;
# Train monophone models on a subset of the data, 10K segment
# Note: the --boost-silence option should probably be omitted by default
steps/train_mono.sh --nj 40 --cmd "$train_cmd" \
data/train.10k data/lang exp/mono || exit 1;
# Get alignments from monophone system.
steps/align_si.sh --nj $num_jobs --cmd "$train_cmd" \
data/train.50k data/lang exp/mono exp/mono_ali.50k || exit 1;
# train tri1 [first triphone pass]
steps/train_deltas.sh --cmd "$train_cmd" \
2500 30000 data/train.50k data/lang exp/mono_ali.50k exp/tri1 || exit 1;
# First triphone decoding
utils/mkgraph.sh data/lang_test exp/tri1 exp/tri1/graph || exit 1;
steps/decode.sh --nj $num_jobs_decode --cmd "$decode_cmd" \
exp/tri1/graph data/dev exp/tri1/decode &
steps/align_si.sh --nj $num_jobs --cmd "$train_cmd" \
data/train data/lang exp/tri1 exp/tri1_ali || exit 1;
# Train tri2a, which is deltas+delta+deltas
steps/train_deltas.sh --cmd "$train_cmd" \
3000 40000 data/train data/lang exp/tri1_ali exp/tri2a || exit 1;
# tri2a decoding
utils/mkgraph.sh data/lang_test exp/tri2a exp/tri2a/graph || exit 1;
steps/decode.sh --nj $num_jobs_decode --cmd "$decode_cmd" \
exp/tri2a/graph data/dev exp/tri2a/decode &
steps/align_si.sh --nj $num_jobs --cmd "$train_cmd" \
data/train data/lang exp/tri2a exp/tri2a_ali || exit 1;
# train and decode tri2b [LDA+MLLT]
steps/train_lda_mllt.sh --cmd "$train_cmd" 4000 50000 \
data/train data/lang exp/tri2a_ali exp/tri2b || exit 1;
utils/mkgraph.sh data/lang_test exp/tri2b exp/tri2b/graph || exit 1;
steps/decode.sh --nj $num_jobs_decode --cmd "$decode_cmd" exp/tri2b/graph data/dev exp/tri2b/decode &
# Align all data with LDA+MLLT system (tri2b)
steps/align_si.sh --nj $num_jobs --cmd "$train_cmd" \
--use-graphs true data/train data/lang exp/tri2b exp/tri2b_ali || exit 1;
# Do MMI on top of LDA+MLLT.
steps/make_denlats.sh --nj $num_jobs --cmd "$train_cmd" \
data/train data/lang exp/tri2b exp/tri2b_denlats || exit 1;
steps/train_mmi.sh data/train data/lang exp/tri2b_ali \
exp/tri2b_denlats exp/tri2b_mmi
steps/decode.sh --iter 4 --nj $num_jobs --cmd "$decode_cmd" exp/tri2b/graph \
data/dev exp/tri2b_mmi/decode_it4 &
steps/decode.sh --iter 3 --nj $num_jobs --cmd "$decode_cmd" exp/tri2b/graph \
data/dev exp/tri2b_mmi/decode_it3 & # Do the same with boosting.
steps/train_mmi.sh --boost 0.1 data/train data/lang exp/tri2b_ali \
exp/tri2b_denlats exp/tri2b_mmi_b0.1
steps/decode.sh --iter 4 --nj $num_jobs --cmd "$decode_cmd" exp/tri2b/graph \
data/dev exp/tri2b_mmi_b0.1/decode_it4 &
steps/decode.sh --iter 3 --nj $num_jobs --cmd "$decode_cmd" exp/tri2b/graph \
data/dev exp/tri2b_mmi_b0.1/decode_it3 &
# Do MPE.
steps/train_mpe.sh data/train data/lang exp/tri2b_ali exp/tri2b_denlats exp/tri2b_mpe || exit 1;
steps/decode.sh --iter 4 --nj $num_jobs_decode --cmd "$decode_cmd" exp/tri2b/graph \
data/dev exp/tri2b_mpe/decode_it4 &
steps/decode.sh --iter 3 --nj $num_jobs_decode --cmd "$decode_cmd" exp/tri2b/graph \
data/dev exp/tri2b_mpe/decode_it3 &
# From 2b system, train 3b which is LDA + MLLT + SAT.
steps/train_sat.sh --cmd "$train_cmd" \
5000 100000 data/train data/lang exp/tri2b_ali exp/tri3b || exit 1;
utils/mkgraph.sh data/lang_test exp/tri3b exp/tri3b/graph|| exit 1;
steps/decode_fmllr.sh --nj $num_jobs_decode --cmd "$decode_cmd" \
exp/tri3b/graph data/dev exp/tri3b/decode &
# From 3b system, align all data.
steps/align_fmllr.sh --nj $num_jobs --cmd "$train_cmd" \
data/train data/lang exp/tri3b exp/tri3b_ali || exit 1;
## SGMM (subspace gaussian mixture model), excluding the "speaker-dependent weights"
steps/train_ubm.sh --cmd "$train_cmd" 700 \
data/train data/lang exp/tri3b_ali exp/ubm5a || exit 1;
steps/train_sgmm2.sh --cmd "$train_cmd" 5000 20000 data/train data/lang exp/tri3b_ali \
exp/ubm5a/final.ubm exp/sgmm_5a || exit 1;
utils/mkgraph.sh data/lang_test exp/sgmm_5a exp/sgmm_5a/graph || exit 1;
steps/decode_sgmm2.sh --nj $num_jobs_decode --cmd "$decode_cmd" --config conf/decode.config \
--transform-dir exp/tri3b/decode exp/sgmm_5a/graph data/dev exp/sgmm_5a/decode &
steps/align_sgmm2.sh --nj $num_jobs --cmd "$train_cmd" --transform-dir exp/tri3b_ali \
--use-graphs true --use-gselect true data/train data/lang exp/sgmm_5a exp/sgmm_5a_ali || exit 1;
## boosted MMI on SGMM
steps/make_denlats_sgmm2.sh --nj $num_jobs --sub-split $num_jobs --beam 9.0 --lattice-beam 6 \
--cmd "$decode_cmd" --num-threads 4 --transform-dir exp/tri3b_ali \
data/train data/lang exp/sgmm_5a_ali exp/sgmm_5a_denlats || exit 1;
steps/train_mmi_sgmm2.sh --cmd "$train_cmd" --num-iters 8 --transform-dir exp/tri3b_ali --boost 0.1 \
data/train data/lang exp/sgmm_5a exp/sgmm_5a_denlats exp/sgmm_5a_mmi_b0.1
#decode GMM MMI
utils/mkgraph.sh data/lang_test exp/sgmm_5a_mmi_b0.1 exp/sgmm_5a_mmi_b0.1/graph || exit 1;
steps/decode_sgmm2.sh --nj $num_jobs_decode --cmd "$decode_cmd" --config conf/decode.config \
--transform-dir exp/tri3b/decode exp/sgmm_5a_mmi_b0.1/graph data/dev exp/sgmm_5a_mmi_b0.1/decode
for n in 1 2 3 4; do
steps/decode_sgmm2_rescore.sh --cmd "$decode_cmd" --iter $n --transform-dir exp/tri3b/decode data/lang_test \
data/dev exp/sgmm_5a_mmi_b0.1/decode exp/sgmm_5a_mmi_b0.1/decode$n
done
wait
#local/nnet/run_dnn.sh
echo "# Get WER and CER" > RESULTS
for x in exp/*/decode*; do [ -d $x ] && grep WER $x/wer_[0-9]* | utils/best_wer.sh; \
done | sort -n -r -k2 >> RESULTS
echo "" >> RESULTS
for x in exp/*/decode*; do [ -d $x ] && grep WER $x/cer_[0-9]* | utils/best_wer.sh; \
done | sort -n -r -k2 >> RESULTS
echo -e "\n# Detailed WER on all corpus dev sets" >> RESULTS
local/split_wer_per_corpus.sh $galeData >> RESULTS
echo training succedded
exit 0