Blame view
egs/hkust/s5/local/online/run_nnet2_common.sh
4.79 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
#!/bin/bash . ./cmd.sh set -e stage=1 train_stage=-10 . ./path.sh . ./utils/parse_options.sh mkdir -p exp/nnet2_online if [ $stage -le 1 ]; then mfccdir=mfcc_hires if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $mfccdir/storage ]; then date=$(date +'%m_%d_%H_%M') utils/create_split_dir.pl /export/b0{5,6,7,8}/$USER/kaldi-data/egs/hkust-$date/s5b/$mfccdir/storage $mfccdir/storage fi utils/copy_data_dir.sh data/train data/train_scaled_hires utils/copy_data_dir.sh data/train data/train_hires data_dir=data/train_scaled_hires cat $data_dir/wav.scp | python -c " import sys, os, subprocess, re, random scale_low = 1.0/8 scale_high = 2.0 for line in sys.stdin.readlines(): if len(line.strip()) == 0: continue print '{0} sox --vol {1} -t wav - -t wav - |'.format(line.strip(), random.uniform(scale_low, scale_high)) "| sort -k1,1 -u > $data_dir/wav.scp_scaled || exit 1; mv $data_dir/wav.scp_scaled $data_dir/wav.scp steps/make_mfcc_pitch_online.sh --nj 70 --mfcc-config conf/mfcc_hires.conf \ --cmd "$train_cmd" data/train_scaled_hires exp/make_hires/train_scaled $mfccdir; steps/compute_cmvn_stats.sh data/train_scaled_hires exp/make_hires/train_scaled $mfccdir; # we need these features for the run_nnet2_ms.sh steps/make_mfcc_pitch_online.sh --nj 70 --mfcc-config conf/mfcc_hires.conf \ --cmd "$train_cmd" data/train_hires exp/make_hires/train $mfccdir; steps/compute_cmvn_stats.sh data/train_hires exp/make_hires/train $mfccdir; # Remove the small number of utterances that couldn't be extracted for some # reason (e.g. too short; no such file). utils/fix_data_dir.sh data/train_scaled_hires; utils/fix_data_dir.sh data/train_hires; # Create MFCC+pitchs for the dev set utils/copy_data_dir.sh data/dev data/dev_hires steps/make_mfcc_pitch_online.sh --cmd "$train_cmd" --nj 10 --mfcc-config conf/mfcc_hires.conf \ data/dev_hires exp/make_hires/dev $mfccdir; steps/compute_cmvn_stats.sh data/dev_hires exp/make_hires/dev $mfccdir; utils/fix_data_dir.sh data/dev_hires # remove segments with problems # Take the MFCCs for training iVector extractors utils/data/limit_feature_dim.sh 0:39 data/train_scaled_hires data/train_scaled_hires_nopitch || exit 1; steps/compute_cmvn_stats.sh data/train_scaled_hires_nopitch exp/make_hires/train $mfccdir || exit 1; utils/data/limit_feature_dim.sh 0:39 data/train_hires data/train_hires_nopitch || exit 1; steps/compute_cmvn_stats.sh data/train_hires_nopitch exp/make_hires/train $mfccdir || exit 1; utils/data/limit_feature_dim.sh 0:39 data/dev_hires data/dev_hires_nopitch || exit 1; steps/compute_cmvn_stats.sh data/dev_hires_nopitch exp/make_hires/dev $mfccdir || exit 1; # Take the first 30k utterances (about 1/5th of the data) this will be used # for the diagubm training utils/subset_data_dir.sh --first data/train_scaled_hires_nopitch 30000 data/train_scaled_hires_30k # create a 100k subset for the lda+mllt training utils/subset_data_dir.sh --first data/train_scaled_hires_nopitch 100000 data/train_scaled_hires_100k; fi if [ $stage -le 2 ]; then # We need to build a small system just because we need the LDA+MLLT transform # to train the diag-UBM on top of. We use --num-iters 13 because after we get # the transform (12th iter is the last), any further training is pointless. # this decision is based on fisher_english steps/train_lda_mllt.sh --cmd "$train_cmd" --num-iters 13 \ --splice-opts "--left-context=3 --right-context=3" \ 5500 90000 data/train_scaled_hires_100k \ data/lang exp/tri2_ali_100k exp/nnet2_online/tri3b fi if [ $stage -le 3 ]; then # To train a diagonal UBM we don't need very much data, so use the smallest subset. steps/online/nnet2/train_diag_ubm.sh --cmd "$train_cmd" --nj 30 --num-frames 200000 \ data/train_scaled_hires_30k 512 exp/nnet2_online/tri3b exp/nnet2_online/diag_ubm fi if [ $stage -le 4 ]; then # iVector extractors can be sensitive to the amount of data, but this one has a # fairly small dim (defaults to 100) so we don't use all of it, we use just the # 100k subset (just under half the data). steps/online/nnet2/train_ivector_extractor.sh --cmd "$train_cmd" --nj 10 \ data/train_scaled_hires_100k exp/nnet2_online/diag_ubm exp/nnet2_online/extractor || exit 1; fi if [ $stage -le 5 ]; then # We extract iVectors on all the train_nodup data, which will be what we # train the system on. # having a larger number of speakers is helpful for generalization, and to # handle per-utterance decoding well (iVector starts at zero). steps/online/nnet2/copy_data_dir.sh --utts-per-spk-max 2 data/train_hires_nopitch data/train_hires_nopitch_max2 steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj 30 \ data/train_hires_nopitch_max2 exp/nnet2_online/extractor exp/nnet2_online/ivectors_train || exit 1; fi exit 0; |