run_nnet2_common.sh
4.79 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
#!/bin/bash
. ./cmd.sh
set -e
stage=1
train_stage=-10
. ./path.sh
. ./utils/parse_options.sh
mkdir -p exp/nnet2_online
if [ $stage -le 1 ]; then
mfccdir=mfcc_hires
if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $mfccdir/storage ]; then
date=$(date +'%m_%d_%H_%M')
utils/create_split_dir.pl /export/b0{5,6,7,8}/$USER/kaldi-data/egs/hkust-$date/s5b/$mfccdir/storage $mfccdir/storage
fi
utils/copy_data_dir.sh data/train data/train_scaled_hires
utils/copy_data_dir.sh data/train data/train_hires
data_dir=data/train_scaled_hires
cat $data_dir/wav.scp | python -c "
import sys, os, subprocess, re, random
scale_low = 1.0/8
scale_high = 2.0
for line in sys.stdin.readlines():
if len(line.strip()) == 0:
continue
print '{0} sox --vol {1} -t wav - -t wav - |'.format(line.strip(), random.uniform(scale_low, scale_high))
"| sort -k1,1 -u > $data_dir/wav.scp_scaled || exit 1;
mv $data_dir/wav.scp_scaled $data_dir/wav.scp
steps/make_mfcc_pitch_online.sh --nj 70 --mfcc-config conf/mfcc_hires.conf \
--cmd "$train_cmd" data/train_scaled_hires exp/make_hires/train_scaled $mfccdir;
steps/compute_cmvn_stats.sh data/train_scaled_hires exp/make_hires/train_scaled $mfccdir;
# we need these features for the run_nnet2_ms.sh
steps/make_mfcc_pitch_online.sh --nj 70 --mfcc-config conf/mfcc_hires.conf \
--cmd "$train_cmd" data/train_hires exp/make_hires/train $mfccdir;
steps/compute_cmvn_stats.sh data/train_hires exp/make_hires/train $mfccdir;
# Remove the small number of utterances that couldn't be extracted for some
# reason (e.g. too short; no such file).
utils/fix_data_dir.sh data/train_scaled_hires;
utils/fix_data_dir.sh data/train_hires;
# Create MFCC+pitchs for the dev set
utils/copy_data_dir.sh data/dev data/dev_hires
steps/make_mfcc_pitch_online.sh --cmd "$train_cmd" --nj 10 --mfcc-config conf/mfcc_hires.conf \
data/dev_hires exp/make_hires/dev $mfccdir;
steps/compute_cmvn_stats.sh data/dev_hires exp/make_hires/dev $mfccdir;
utils/fix_data_dir.sh data/dev_hires # remove segments with problems
# Take the MFCCs for training iVector extractors
utils/data/limit_feature_dim.sh 0:39 data/train_scaled_hires data/train_scaled_hires_nopitch || exit 1;
steps/compute_cmvn_stats.sh data/train_scaled_hires_nopitch exp/make_hires/train $mfccdir || exit 1;
utils/data/limit_feature_dim.sh 0:39 data/train_hires data/train_hires_nopitch || exit 1;
steps/compute_cmvn_stats.sh data/train_hires_nopitch exp/make_hires/train $mfccdir || exit 1;
utils/data/limit_feature_dim.sh 0:39 data/dev_hires data/dev_hires_nopitch || exit 1;
steps/compute_cmvn_stats.sh data/dev_hires_nopitch exp/make_hires/dev $mfccdir || exit 1;
# Take the first 30k utterances (about 1/5th of the data) this will be used
# for the diagubm training
utils/subset_data_dir.sh --first data/train_scaled_hires_nopitch 30000 data/train_scaled_hires_30k
# create a 100k subset for the lda+mllt training
utils/subset_data_dir.sh --first data/train_scaled_hires_nopitch 100000 data/train_scaled_hires_100k;
fi
if [ $stage -le 2 ]; then
# We need to build a small system just because we need the LDA+MLLT transform
# to train the diag-UBM on top of. We use --num-iters 13 because after we get
# the transform (12th iter is the last), any further training is pointless.
# this decision is based on fisher_english
steps/train_lda_mllt.sh --cmd "$train_cmd" --num-iters 13 \
--splice-opts "--left-context=3 --right-context=3" \
5500 90000 data/train_scaled_hires_100k \
data/lang exp/tri2_ali_100k exp/nnet2_online/tri3b
fi
if [ $stage -le 3 ]; then
# To train a diagonal UBM we don't need very much data, so use the smallest subset.
steps/online/nnet2/train_diag_ubm.sh --cmd "$train_cmd" --nj 30 --num-frames 200000 \
data/train_scaled_hires_30k 512 exp/nnet2_online/tri3b exp/nnet2_online/diag_ubm
fi
if [ $stage -le 4 ]; then
# iVector extractors can be sensitive to the amount of data, but this one has a
# fairly small dim (defaults to 100) so we don't use all of it, we use just the
# 100k subset (just under half the data).
steps/online/nnet2/train_ivector_extractor.sh --cmd "$train_cmd" --nj 10 \
data/train_scaled_hires_100k exp/nnet2_online/diag_ubm exp/nnet2_online/extractor || exit 1;
fi
if [ $stage -le 5 ]; then
# We extract iVectors on all the train_nodup data, which will be what we
# train the system on.
# having a larger number of speakers is helpful for generalization, and to
# handle per-utterance decoding well (iVector starts at zero).
steps/online/nnet2/copy_data_dir.sh --utts-per-spk-max 2 data/train_hires_nopitch data/train_hires_nopitch_max2
steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj 30 \
data/train_hires_nopitch_max2 exp/nnet2_online/extractor exp/nnet2_online/ivectors_train || exit 1;
fi
exit 0;