Blame view
egs/hub4_english/s5/run.sh
8.12 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
#!/bin/bash # Copyright 2016 Vimal Manohar # Apache 2.0. # See README.txt for more info on data required. . ./cmd.sh . ./path.sh set -o pipefail set -e mfccdir=`pwd`/mfcc nj=40 stage=-1 . utils/parse_options.sh # Training corpora # 1996 English Broadcast News Train (HUB4) hub4_96_train_transcripts=/export/corpora/LDC/LDC97T22/hub4_eng_train_trans hub4_96_train_speech=/export/corpora/LDC/LDC97S44/data # 1997 English Broadcast News Train (HUB4) hub4_97_train_transcripts=/export/corpora/LDC/LDC98T28/hub4e97_trans_980217 hub4_97_train_speech=/export/corpora/LDC/LDC98S71/97_eng_bns_hub4 # 1996 CSR HUB4 Language Model csr_hub4_lm=/export/corpora/LDC/LDC98T31/1996_csr_hub4_model # 1995 CSR-IV HUB4 corpus csr95_hub4=/export/corpora/LDC/LDC96S31/csr95_hub4 # North American News Text Corpus NA_text=/export/corpora/LDC/LDC95T21 # North American News Text Supplement Corpus NA_text_supp=/export/corpora/LDC/LDC98T30/northam_news_txt_sup # Test corpora # 1996 English Broadcast News Dev and Eval (HUB4) hub4_96_eval=/export/corpora/LDC/LDC97S66/1996_eng_bcast_dev_eval # 1997 HUB4 English Evaluation corpus hub4_97_eval=/export/corpora/LDC/LDC2002S11/hub4e_97 # 1998 HUB4 Broadcast News Evaluation English Test Material hub4_98_eval=/export/corpora/LDC/LDC2000S86 # 1999 HUB4 Broadcast News Evaluation English Test Material hub4_99_eval=/export/corpora5/LDC/LDC2000S88/hub4_1999 # Test sets used -- Uncomment and keep only test sets needed test_sets="eval97.pem" # test_sets="dev96ue dev96pe eval96 eval96.pem eval97 eval97.pem eval98 eval98.pem eval99_1 eval99_1.pem eval99_2 eval99_2.pem" if [ $stage -le 0 ]; then # Prepare 1996 English Broadcast News Train (HUB4) local/data_prep/prepare_1996_bn_data.sh \ $hub4_96_train_transcripts \ $hub4_96_train_speech \ data/local/data/train_bn96 # Prepare 1997 English Broadcast News Train (HUB4) local/data_prep/prepare_1997_bn_data.sh \ $hub4_97_train_transcripts \ $hub4_97_train_speech \ data/local/data/train_bn97 fi # Install Beautiful Soup 4 python package for parsing SGML-like files # in CSR-IV HUB4 corpus if [ ! -d tools/beautifulsoup4 ]; then mkdir -p tools pip install -t tools/beautifulsoup4 beautifulsoup4 fi export PYTHONPATH=$PWD/tools/beautifulsoup4:$PYTHONPATH if [ $stage -le 1 ]; then if [ ! -f $csr_hub4_lm/utils.tar ]; then echo "Expected CSR-IV utils.tar to be found" exit 1 fi mkdir -p tools/csr4_utils ( cd tools/csr4_utils tar -xvf $csr_hub4_lm/utils.tar ) chmod a+w tools/csr4_utils patch -u -d tools/csr4_utils -p3 < local/data_prep/csr4_utils.patch fi if [ $stage -le 2 ]; then # Prepare 1995 CSR-IV HUB4 corpus local/data_prep/prepare_1995_csr_hub4_corpus.sh \ $csr95_hub4 data/local/data/csr95_hub4 fi if [ $stage -le 3 ]; then # Prepare North American News Text Corpus local/data_prep/prepare_na_news_text_corpus.sh --nj 40 --cmd "$train_cmd" \ $NA_text data/local/data/na_news # Prepare North American News Text Supplement Corpus local/data_prep/prepare_na_news_text_supplement.sh --nj 10 --cmd "$train_cmd" \ $NA_text_supp data/local/data/na_news_supp fi if [ $stage -le 4 ]; then # Prepare 1996 CSR HUB4 Language Model local/data_prep/prepare_1996_csr_hub4_lm_corpus.sh --nj 10 --cmd "$train_cmd" \ $csr_hub4_lm data/local/data/csr96_hub4 fi if [ $stage -le 5 ]; then # Prepare 1996 English Broadcast News Dev and Eval (HUB4) local/data_prep/prepare_1996_hub4_bn_eng_dev_and_eval.sh \ $hub4_96_eval \ data/local/data/hub4_96_dev_eval # Prepare 1997 HUB4 English Evaluation corpus local/data_prep/prepare_1997_hub4_bn_eng_eval.sh \ $hub4_97_eval data/local/data/eval97 # Prepare 1998 HUB4 Broadcast News Evaluation English Test Material local/data_prep/prepare_1998_hub4_bn_eng_eval.sh \ $hub4_98_eval data/local/data/eval98 # Prepare 1999 HUB4 Broadcast News Evaluation English Test Material local/data_prep/prepare_1999_hub4_bn_eng_eval.sh \ $hub4_99_eval data/local/data/eval99 fi if [ $stage -le 6 ]; then local/format_data.sh fi if [ $stage -le 7 ]; then local/train_lm.sh fi if [ $stage -le 8 ]; then local/prepare_dict.sh --dict-suffix "_nosp" \ data/local/local_lm/data/work/wordlist utils/prepare_lang.sh data/local/dict_nosp \ "<unk>" data/local/lang_tmp_nosp data/lang_nosp fi if [ $stage -le 9 ]; then local/format_lms.sh --local-lm-dir data/local/local_lm fi if [ $stage -le 10 ]; then for x in train $test_sets; do this_nj=$(cat data/$x/utt2spk | wc -l) if [ $this_nj -gt 30 ]; then this_nj=30 fi steps/make_mfcc.sh --mfcc-config conf/mfcc.conf --nj $this_nj \ --cmd "$train_cmd" \ data/$x exp/make_mfcc $mfccdir steps/compute_cmvn_stats.sh data/$x exp/make_mfcc $mfccdir utils/fix_data_dir.sh data/$x done fi if [ $stage -le 15 ]; then utils/subset_data_dir.sh --shortest data/train 1000 data/train_1kshort utils/subset_data_dir.sh data/train 2000 data/train_2k # Note: the --boost-silence option should probably be omitted by default # for normal setups. It doesn't always help. [it's to discourage non-silence # models from modeling silence.] steps/train_mono.sh --boost-silence 1.25 --nj $nj --cmd "$train_cmd" \ data/train_1kshort data/lang_nosp exp/mono0a fi if [ $stage -le 16 ]; then steps/align_si.sh --boost-silence 1.25 --nj $nj --cmd "$train_cmd" \ data/train_2k data/lang_nosp exp/mono0a exp/mono0a_ali steps/train_deltas.sh --boost-silence 1.25 --cmd "$train_cmd" 2000 10000 \ data/train_2k data/lang_nosp exp/mono0a_ali exp/tri1 fi if [ $stage -le 17 ]; then steps/align_si.sh --nj $nj --cmd "$train_cmd" \ data/train data/lang_nosp exp/tri1 exp/tri1_ali steps/train_lda_mllt.sh --cmd "$train_cmd" 2500 15000 \ data/train data/lang_nosp exp/tri1_ali exp/tri2 fi if [ $stage -le 18 ]; then steps/align_si.sh --nj $nj --cmd "$train_cmd" \ data/train data/lang_nosp exp/tri2 exp/tri2_ali steps/train_sat.sh --cmd "$train_cmd" 4200 40000 \ data/train data/lang_nosp exp/tri2_ali exp/tri3 fi if [ $stage -le 19 ]; then utils/mkgraph.sh data/lang_nosp_test exp/tri3 exp/tri3/graph_nosp for dset in $test_sets; do ( this_nj=`cat data/$dset/spk2utt | wc -l` if [ $this_nj -gt 20 ]; then this_nj=20 fi steps/decode_fmllr.sh --nj $this_nj --cmd "$decode_cmd" --num-threads 4 \ exp/tri3/graph_nosp data/$dset exp/tri3/decode_nosp_${dset} || touch exp/tri3/.error steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \ data/lang_nosp_test data/lang_nosp_test_rescore \ data/${dset} exp/tri3/decode_nosp_${dset} \ exp/tri3/decode_nosp_${dset}_rescore || touch exp/tri3/.error ) & done wait if [ -f exp/tri3/.error ]; then echo "Decode failed in exp/tri3/decode*" exit 1 fi fi if [ $stage -le 20 ]; then steps/align_fmllr.sh --nj $nj --cmd "$train_cmd" \ data/train data/lang_nosp exp/tri3 exp/tri3_ali steps/train_sat.sh --cmd "$train_cmd" 5000 100000 \ data/train data/lang_nosp exp/tri3_ali exp/tri4 fi if [ $stage -le 21 ]; then utils/mkgraph.sh data/lang_nosp_test exp/tri4 exp/tri4/graph_nosp for dset in $test_sets; do ( this_nj=`cat data/$dset/spk2utt | wc -l` if [ $this_nj -gt 20 ]; then this_nj=20 fi steps/decode_fmllr.sh --nj $this_nj --cmd "$decode_cmd" --num-threads 4 \ exp/tri4/graph_nosp data/$dset exp/tri4/decode_nosp_${dset} steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \ data/lang_nosp_test data/lang_nosp_test_rescore \ data/${dset} exp/tri4/decode_nosp_${dset} \ exp/tri4/decode_nosp_${dset}_rescore ) & done wait if [ -f exp/tri4/.error ]; then echo "Decode failed in exp/tri4/decode*" exit 1 fi fi wait # %WER 18.0 | 728 32834 | 83.9 11.7 4.3 2.0 18.0 85.9 | exp/tri4/decode_nosp_eval97.pem_rescore/score_14_0.0/eval97.pem.ctm.filt.sys # %WER 19.3 | 728 32834 | 82.9 12.6 4.6 2.2 19.3 86.8 | exp/tri4/decode_nosp_eval97.pem/score_13_0.0/eval97.pem.ctm.filt.sys # The following demonstrates how to use out-of-domain WSJ models to segment long # audio recordings of HUB4 with raw unaligned transcripts into short segments # with aligned transcripts for training new ASR models. # local/run_segmentation_wsj.sh exit 0 |