Blame view

egs/hub4_english/s5/run.sh 8.12 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
  #!/bin/bash
  
  # Copyright 2016   Vimal Manohar
  # Apache 2.0.
  
  # See README.txt for more info on data required.
  
  . ./cmd.sh
  . ./path.sh
  
  set -o pipefail
  set -e
  
  mfccdir=`pwd`/mfcc
  nj=40
  stage=-1
  
  . utils/parse_options.sh
  
  # Training corpora
  
  # 1996 English Broadcast News Train (HUB4)
  hub4_96_train_transcripts=/export/corpora/LDC/LDC97T22/hub4_eng_train_trans
  hub4_96_train_speech=/export/corpora/LDC/LDC97S44/data
  # 1997 English Broadcast News Train (HUB4)
  hub4_97_train_transcripts=/export/corpora/LDC/LDC98T28/hub4e97_trans_980217
  hub4_97_train_speech=/export/corpora/LDC/LDC98S71/97_eng_bns_hub4
  # 1996 CSR HUB4 Language Model
  csr_hub4_lm=/export/corpora/LDC/LDC98T31/1996_csr_hub4_model
  # 1995 CSR-IV HUB4 corpus
  csr95_hub4=/export/corpora/LDC/LDC96S31/csr95_hub4
  # North American News Text Corpus
  NA_text=/export/corpora/LDC/LDC95T21
  # North American News Text Supplement Corpus
  NA_text_supp=/export/corpora/LDC/LDC98T30/northam_news_txt_sup
  
  # Test corpora
  
  # 1996 English Broadcast News Dev and Eval (HUB4)
  hub4_96_eval=/export/corpora/LDC/LDC97S66/1996_eng_bcast_dev_eval
  # 1997 HUB4 English Evaluation corpus
  hub4_97_eval=/export/corpora/LDC/LDC2002S11/hub4e_97
  # 1998 HUB4 Broadcast News Evaluation English Test Material
  hub4_98_eval=/export/corpora/LDC/LDC2000S86
  # 1999 HUB4 Broadcast News Evaluation English Test Material
  hub4_99_eval=/export/corpora5/LDC/LDC2000S88/hub4_1999
  
  # Test sets used -- Uncomment and keep only test sets needed
  test_sets="eval97.pem"
  # test_sets="dev96ue dev96pe eval96 eval96.pem eval97 eval97.pem eval98 eval98.pem eval99_1 eval99_1.pem eval99_2 eval99_2.pem"
  
  if [ $stage -le 0 ]; then
    # Prepare 1996 English Broadcast News Train (HUB4)
    local/data_prep/prepare_1996_bn_data.sh \
      $hub4_96_train_transcripts \
      $hub4_96_train_speech \
      data/local/data/train_bn96
  
    # Prepare 1997 English Broadcast News Train (HUB4)
    local/data_prep/prepare_1997_bn_data.sh \
      $hub4_97_train_transcripts \
      $hub4_97_train_speech \
      data/local/data/train_bn97
  fi
  
  # Install Beautiful Soup 4 python package for parsing SGML-like files
  # in CSR-IV HUB4 corpus
  if [ ! -d tools/beautifulsoup4 ]; then
    mkdir -p tools
    pip install -t tools/beautifulsoup4 beautifulsoup4
  fi
  export PYTHONPATH=$PWD/tools/beautifulsoup4:$PYTHONPATH
  
  if [ $stage -le 1 ]; then
    if [ ! -f $csr_hub4_lm/utils.tar ]; then
      echo "Expected CSR-IV utils.tar to be found"
      exit 1
    fi
  
    mkdir -p tools/csr4_utils
    (
      cd tools/csr4_utils
      tar -xvf $csr_hub4_lm/utils.tar
    )
  
    chmod a+w tools/csr4_utils
    patch -u -d tools/csr4_utils -p3 < local/data_prep/csr4_utils.patch
  fi
  
  if [ $stage -le 2 ]; then
    # Prepare 1995 CSR-IV HUB4 corpus
    local/data_prep/prepare_1995_csr_hub4_corpus.sh \
      $csr95_hub4 data/local/data/csr95_hub4
  fi
  
  if [ $stage -le 3 ]; then
    # Prepare North American News Text Corpus
    local/data_prep/prepare_na_news_text_corpus.sh --nj 40 --cmd "$train_cmd" \
       $NA_text data/local/data/na_news
  
    # Prepare North American News Text Supplement Corpus
    local/data_prep/prepare_na_news_text_supplement.sh --nj 10 --cmd "$train_cmd" \
      $NA_text_supp data/local/data/na_news_supp
  fi
  
  if [ $stage -le 4 ]; then
    # Prepare 1996 CSR HUB4 Language Model
    local/data_prep/prepare_1996_csr_hub4_lm_corpus.sh --nj 10 --cmd "$train_cmd" \
       $csr_hub4_lm data/local/data/csr96_hub4
  fi
  
  if [ $stage -le 5 ]; then
    # Prepare 1996 English Broadcast News Dev and Eval (HUB4)
    local/data_prep/prepare_1996_hub4_bn_eng_dev_and_eval.sh \
      $hub4_96_eval \
      data/local/data/hub4_96_dev_eval
  
    # Prepare 1997 HUB4 English Evaluation corpus
    local/data_prep/prepare_1997_hub4_bn_eng_eval.sh \
      $hub4_97_eval data/local/data/eval97
  
    # Prepare 1998 HUB4 Broadcast News Evaluation English Test Material
    local/data_prep/prepare_1998_hub4_bn_eng_eval.sh \
      $hub4_98_eval data/local/data/eval98
  
    # Prepare 1999 HUB4 Broadcast News Evaluation English Test Material
    local/data_prep/prepare_1999_hub4_bn_eng_eval.sh \
      $hub4_99_eval data/local/data/eval99
  fi
  
  if [ $stage -le 6 ]; then
    local/format_data.sh
  fi
  
  if [ $stage -le 7 ]; then
    local/train_lm.sh
  fi
  
  if [ $stage -le 8 ]; then
    local/prepare_dict.sh --dict-suffix "_nosp" \
      data/local/local_lm/data/work/wordlist
  
    utils/prepare_lang.sh data/local/dict_nosp \
      "<unk>" data/local/lang_tmp_nosp data/lang_nosp
  fi
  
  if [ $stage -le 9 ]; then
    local/format_lms.sh --local-lm-dir data/local/local_lm
  fi
  
  if [ $stage -le 10 ]; then
    for x in train $test_sets; do
      this_nj=$(cat data/$x/utt2spk | wc -l)
      if [ $this_nj -gt 30 ]; then
        this_nj=30
      fi
  
      steps/make_mfcc.sh --mfcc-config conf/mfcc.conf --nj $this_nj \
        --cmd "$train_cmd" \
        data/$x exp/make_mfcc $mfccdir
      steps/compute_cmvn_stats.sh data/$x exp/make_mfcc $mfccdir
      utils/fix_data_dir.sh data/$x
    done
  fi
  
  if [ $stage -le 15 ]; then
    utils/subset_data_dir.sh --shortest data/train 1000 data/train_1kshort
    utils/subset_data_dir.sh data/train 2000 data/train_2k
  
    # Note: the --boost-silence option should probably be omitted by default
    # for normal setups.  It doesn't always help. [it's to discourage non-silence
    # models from modeling silence.]
    steps/train_mono.sh --boost-silence 1.25 --nj $nj --cmd "$train_cmd" \
      data/train_1kshort data/lang_nosp exp/mono0a
  fi
  
  if [ $stage -le 16 ]; then
    steps/align_si.sh --boost-silence 1.25 --nj $nj --cmd "$train_cmd" \
      data/train_2k data/lang_nosp exp/mono0a exp/mono0a_ali
  
    steps/train_deltas.sh --boost-silence 1.25 --cmd "$train_cmd" 2000 10000 \
      data/train_2k data/lang_nosp exp/mono0a_ali exp/tri1
  fi
  
  if [ $stage -le 17 ]; then
    steps/align_si.sh --nj $nj --cmd "$train_cmd" \
      data/train data/lang_nosp exp/tri1 exp/tri1_ali
  
    steps/train_lda_mllt.sh --cmd "$train_cmd" 2500 15000 \
      data/train data/lang_nosp exp/tri1_ali exp/tri2
  fi
  
  if [ $stage -le 18 ]; then
    steps/align_si.sh --nj $nj --cmd "$train_cmd" \
      data/train data/lang_nosp exp/tri2 exp/tri2_ali
  
    steps/train_sat.sh --cmd "$train_cmd" 4200 40000 \
      data/train data/lang_nosp exp/tri2_ali exp/tri3
  fi
  
  if [ $stage -le 19 ]; then
    utils/mkgraph.sh data/lang_nosp_test exp/tri3 exp/tri3/graph_nosp
  
    for dset in $test_sets; do
      (
      this_nj=`cat data/$dset/spk2utt | wc -l`
      if [ $this_nj -gt 20 ]; then
        this_nj=20
      fi
      steps/decode_fmllr.sh --nj $this_nj --cmd "$decode_cmd" --num-threads 4 \
        exp/tri3/graph_nosp data/$dset exp/tri3/decode_nosp_${dset} || touch exp/tri3/.error
      steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \
        data/lang_nosp_test data/lang_nosp_test_rescore \
        data/${dset} exp/tri3/decode_nosp_${dset} \
        exp/tri3/decode_nosp_${dset}_rescore || touch exp/tri3/.error
      ) &
    done
    wait
  
    if [ -f exp/tri3/.error ]; then
      echo "Decode failed in exp/tri3/decode*"
      exit 1
    fi
  fi
  
  if [ $stage -le 20 ]; then
    steps/align_fmllr.sh --nj $nj --cmd "$train_cmd" \
      data/train data/lang_nosp exp/tri3 exp/tri3_ali
  
    steps/train_sat.sh --cmd "$train_cmd" 5000 100000 \
      data/train data/lang_nosp exp/tri3_ali exp/tri4
  fi
  
  if [ $stage -le 21 ]; then
    utils/mkgraph.sh data/lang_nosp_test exp/tri4 exp/tri4/graph_nosp
  
    for dset in $test_sets; do
      (
      this_nj=`cat data/$dset/spk2utt | wc -l`
      if [ $this_nj -gt 20 ]; then
        this_nj=20
      fi
      steps/decode_fmllr.sh --nj $this_nj --cmd "$decode_cmd" --num-threads 4 \
        exp/tri4/graph_nosp data/$dset exp/tri4/decode_nosp_${dset}
      steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \
        data/lang_nosp_test data/lang_nosp_test_rescore \
        data/${dset} exp/tri4/decode_nosp_${dset} \
        exp/tri4/decode_nosp_${dset}_rescore
      ) &
    done
    wait
  
    if [ -f exp/tri4/.error ]; then
      echo "Decode failed in exp/tri4/decode*"
      exit 1
    fi
  fi
  
  wait
  
  # %WER 18.0 | 728 32834 | 83.9 11.7 4.3 2.0 18.0 85.9 | exp/tri4/decode_nosp_eval97.pem_rescore/score_14_0.0/eval97.pem.ctm.filt.sys
  # %WER 19.3 | 728 32834 | 82.9 12.6 4.6 2.2 19.3 86.8 | exp/tri4/decode_nosp_eval97.pem/score_13_0.0/eval97.pem.ctm.filt.sys
  
  # The following demonstrates how to use out-of-domain WSJ models to segment long
  # audio recordings of HUB4 with raw unaligned transcripts into short segments
  # with aligned transcripts for training new ASR models.
  
  # local/run_segmentation_wsj.sh
  exit 0