run.sh
8.12 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
#!/bin/bash
# Copyright 2016 Vimal Manohar
# Apache 2.0.
# See README.txt for more info on data required.
. ./cmd.sh
. ./path.sh
set -o pipefail
set -e
mfccdir=`pwd`/mfcc
nj=40
stage=-1
. utils/parse_options.sh
# Training corpora
# 1996 English Broadcast News Train (HUB4)
hub4_96_train_transcripts=/export/corpora/LDC/LDC97T22/hub4_eng_train_trans
hub4_96_train_speech=/export/corpora/LDC/LDC97S44/data
# 1997 English Broadcast News Train (HUB4)
hub4_97_train_transcripts=/export/corpora/LDC/LDC98T28/hub4e97_trans_980217
hub4_97_train_speech=/export/corpora/LDC/LDC98S71/97_eng_bns_hub4
# 1996 CSR HUB4 Language Model
csr_hub4_lm=/export/corpora/LDC/LDC98T31/1996_csr_hub4_model
# 1995 CSR-IV HUB4 corpus
csr95_hub4=/export/corpora/LDC/LDC96S31/csr95_hub4
# North American News Text Corpus
NA_text=/export/corpora/LDC/LDC95T21
# North American News Text Supplement Corpus
NA_text_supp=/export/corpora/LDC/LDC98T30/northam_news_txt_sup
# Test corpora
# 1996 English Broadcast News Dev and Eval (HUB4)
hub4_96_eval=/export/corpora/LDC/LDC97S66/1996_eng_bcast_dev_eval
# 1997 HUB4 English Evaluation corpus
hub4_97_eval=/export/corpora/LDC/LDC2002S11/hub4e_97
# 1998 HUB4 Broadcast News Evaluation English Test Material
hub4_98_eval=/export/corpora/LDC/LDC2000S86
# 1999 HUB4 Broadcast News Evaluation English Test Material
hub4_99_eval=/export/corpora5/LDC/LDC2000S88/hub4_1999
# Test sets used -- Uncomment and keep only test sets needed
test_sets="eval97.pem"
# test_sets="dev96ue dev96pe eval96 eval96.pem eval97 eval97.pem eval98 eval98.pem eval99_1 eval99_1.pem eval99_2 eval99_2.pem"
if [ $stage -le 0 ]; then
# Prepare 1996 English Broadcast News Train (HUB4)
local/data_prep/prepare_1996_bn_data.sh \
$hub4_96_train_transcripts \
$hub4_96_train_speech \
data/local/data/train_bn96
# Prepare 1997 English Broadcast News Train (HUB4)
local/data_prep/prepare_1997_bn_data.sh \
$hub4_97_train_transcripts \
$hub4_97_train_speech \
data/local/data/train_bn97
fi
# Install Beautiful Soup 4 python package for parsing SGML-like files
# in CSR-IV HUB4 corpus
if [ ! -d tools/beautifulsoup4 ]; then
mkdir -p tools
pip install -t tools/beautifulsoup4 beautifulsoup4
fi
export PYTHONPATH=$PWD/tools/beautifulsoup4:$PYTHONPATH
if [ $stage -le 1 ]; then
if [ ! -f $csr_hub4_lm/utils.tar ]; then
echo "Expected CSR-IV utils.tar to be found"
exit 1
fi
mkdir -p tools/csr4_utils
(
cd tools/csr4_utils
tar -xvf $csr_hub4_lm/utils.tar
)
chmod a+w tools/csr4_utils
patch -u -d tools/csr4_utils -p3 < local/data_prep/csr4_utils.patch
fi
if [ $stage -le 2 ]; then
# Prepare 1995 CSR-IV HUB4 corpus
local/data_prep/prepare_1995_csr_hub4_corpus.sh \
$csr95_hub4 data/local/data/csr95_hub4
fi
if [ $stage -le 3 ]; then
# Prepare North American News Text Corpus
local/data_prep/prepare_na_news_text_corpus.sh --nj 40 --cmd "$train_cmd" \
$NA_text data/local/data/na_news
# Prepare North American News Text Supplement Corpus
local/data_prep/prepare_na_news_text_supplement.sh --nj 10 --cmd "$train_cmd" \
$NA_text_supp data/local/data/na_news_supp
fi
if [ $stage -le 4 ]; then
# Prepare 1996 CSR HUB4 Language Model
local/data_prep/prepare_1996_csr_hub4_lm_corpus.sh --nj 10 --cmd "$train_cmd" \
$csr_hub4_lm data/local/data/csr96_hub4
fi
if [ $stage -le 5 ]; then
# Prepare 1996 English Broadcast News Dev and Eval (HUB4)
local/data_prep/prepare_1996_hub4_bn_eng_dev_and_eval.sh \
$hub4_96_eval \
data/local/data/hub4_96_dev_eval
# Prepare 1997 HUB4 English Evaluation corpus
local/data_prep/prepare_1997_hub4_bn_eng_eval.sh \
$hub4_97_eval data/local/data/eval97
# Prepare 1998 HUB4 Broadcast News Evaluation English Test Material
local/data_prep/prepare_1998_hub4_bn_eng_eval.sh \
$hub4_98_eval data/local/data/eval98
# Prepare 1999 HUB4 Broadcast News Evaluation English Test Material
local/data_prep/prepare_1999_hub4_bn_eng_eval.sh \
$hub4_99_eval data/local/data/eval99
fi
if [ $stage -le 6 ]; then
local/format_data.sh
fi
if [ $stage -le 7 ]; then
local/train_lm.sh
fi
if [ $stage -le 8 ]; then
local/prepare_dict.sh --dict-suffix "_nosp" \
data/local/local_lm/data/work/wordlist
utils/prepare_lang.sh data/local/dict_nosp \
"<unk>" data/local/lang_tmp_nosp data/lang_nosp
fi
if [ $stage -le 9 ]; then
local/format_lms.sh --local-lm-dir data/local/local_lm
fi
if [ $stage -le 10 ]; then
for x in train $test_sets; do
this_nj=$(cat data/$x/utt2spk | wc -l)
if [ $this_nj -gt 30 ]; then
this_nj=30
fi
steps/make_mfcc.sh --mfcc-config conf/mfcc.conf --nj $this_nj \
--cmd "$train_cmd" \
data/$x exp/make_mfcc $mfccdir
steps/compute_cmvn_stats.sh data/$x exp/make_mfcc $mfccdir
utils/fix_data_dir.sh data/$x
done
fi
if [ $stage -le 15 ]; then
utils/subset_data_dir.sh --shortest data/train 1000 data/train_1kshort
utils/subset_data_dir.sh data/train 2000 data/train_2k
# Note: the --boost-silence option should probably be omitted by default
# for normal setups. It doesn't always help. [it's to discourage non-silence
# models from modeling silence.]
steps/train_mono.sh --boost-silence 1.25 --nj $nj --cmd "$train_cmd" \
data/train_1kshort data/lang_nosp exp/mono0a
fi
if [ $stage -le 16 ]; then
steps/align_si.sh --boost-silence 1.25 --nj $nj --cmd "$train_cmd" \
data/train_2k data/lang_nosp exp/mono0a exp/mono0a_ali
steps/train_deltas.sh --boost-silence 1.25 --cmd "$train_cmd" 2000 10000 \
data/train_2k data/lang_nosp exp/mono0a_ali exp/tri1
fi
if [ $stage -le 17 ]; then
steps/align_si.sh --nj $nj --cmd "$train_cmd" \
data/train data/lang_nosp exp/tri1 exp/tri1_ali
steps/train_lda_mllt.sh --cmd "$train_cmd" 2500 15000 \
data/train data/lang_nosp exp/tri1_ali exp/tri2
fi
if [ $stage -le 18 ]; then
steps/align_si.sh --nj $nj --cmd "$train_cmd" \
data/train data/lang_nosp exp/tri2 exp/tri2_ali
steps/train_sat.sh --cmd "$train_cmd" 4200 40000 \
data/train data/lang_nosp exp/tri2_ali exp/tri3
fi
if [ $stage -le 19 ]; then
utils/mkgraph.sh data/lang_nosp_test exp/tri3 exp/tri3/graph_nosp
for dset in $test_sets; do
(
this_nj=`cat data/$dset/spk2utt | wc -l`
if [ $this_nj -gt 20 ]; then
this_nj=20
fi
steps/decode_fmllr.sh --nj $this_nj --cmd "$decode_cmd" --num-threads 4 \
exp/tri3/graph_nosp data/$dset exp/tri3/decode_nosp_${dset} || touch exp/tri3/.error
steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \
data/lang_nosp_test data/lang_nosp_test_rescore \
data/${dset} exp/tri3/decode_nosp_${dset} \
exp/tri3/decode_nosp_${dset}_rescore || touch exp/tri3/.error
) &
done
wait
if [ -f exp/tri3/.error ]; then
echo "Decode failed in exp/tri3/decode*"
exit 1
fi
fi
if [ $stage -le 20 ]; then
steps/align_fmllr.sh --nj $nj --cmd "$train_cmd" \
data/train data/lang_nosp exp/tri3 exp/tri3_ali
steps/train_sat.sh --cmd "$train_cmd" 5000 100000 \
data/train data/lang_nosp exp/tri3_ali exp/tri4
fi
if [ $stage -le 21 ]; then
utils/mkgraph.sh data/lang_nosp_test exp/tri4 exp/tri4/graph_nosp
for dset in $test_sets; do
(
this_nj=`cat data/$dset/spk2utt | wc -l`
if [ $this_nj -gt 20 ]; then
this_nj=20
fi
steps/decode_fmllr.sh --nj $this_nj --cmd "$decode_cmd" --num-threads 4 \
exp/tri4/graph_nosp data/$dset exp/tri4/decode_nosp_${dset}
steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \
data/lang_nosp_test data/lang_nosp_test_rescore \
data/${dset} exp/tri4/decode_nosp_${dset} \
exp/tri4/decode_nosp_${dset}_rescore
) &
done
wait
if [ -f exp/tri4/.error ]; then
echo "Decode failed in exp/tri4/decode*"
exit 1
fi
fi
wait
# %WER 18.0 | 728 32834 | 83.9 11.7 4.3 2.0 18.0 85.9 | exp/tri4/decode_nosp_eval97.pem_rescore/score_14_0.0/eval97.pem.ctm.filt.sys
# %WER 19.3 | 728 32834 | 82.9 12.6 4.6 2.2 19.3 86.8 | exp/tri4/decode_nosp_eval97.pem/score_13_0.0/eval97.pem.ctm.filt.sys
# The following demonstrates how to use out-of-domain WSJ models to segment long
# audio recordings of HUB4 with raw unaligned transcripts into short segments
# with aligned transcripts for training new ASR models.
# local/run_segmentation_wsj.sh
exit 0