Blame view
egs/iban/s5/local/chain/tuning/run_tdnn_1b.sh
10.8 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
#!/bin/bash # Copyright 2017-2018 Johns Hopkins University (author: Daniel Povey) # 2017-2018 Yiming Wang # 1b is trying a more complicated architecture with factored parameter matrices with dropout. # cat exp/chain/tdnn_1b/decode_dev/scoring_kaldi/best_wer # %WER 17.73 [ 1951 / 11006, 247 ins, 364 del, 1340 sub ] exp/chain/tdnn_1b/decode_dev/wer_10_0.0 # cat exp/chain/tdnn_1b/decode_dev.rescored/scoring_kaldi/best_wer # %WER 16.14 [ 1776 / 11006, 210 ins, 377 del, 1189 sub ] exp/chain/tdnn_1b/decode_dev.rescored/wer_10_0.5 # steps/info/chain_dir_info.pl exp/chain/tdnn_1b # exp/chain/tdnn_1b: num-iters=38 nj=2..5 num-params=12.0M dim=40+50->1592 combine=-0.062->-0.061 (over 2) xent:train/valid[24,37,final]=(-1.28,-1.03,-0.988/-1.61,-1.43,-1.36) logprob:train/valid[24,37,final]=(-0.069,-0.053,-0.049/-0.128,-0.124,-0.120) set -e -o pipefail # First the options that are passed through to run_ivector_common.sh # (some of which are also used in this script directly). stage=0 nj=30 train_set=train test_sets="dev" gmm=tri3b # Options which are not passed through to run_ivector_common.sh affix=1b #affix for TDNN+LSTM directory e.g. "1a" or "1b", in case we change the configuration. common_egs_dir= reporting_email= # LSTM/chain options train_stage=-10 get_egs_stage=-10 xent_regularize=0.1 # training chunk-options chunk_width=140,100,160 # we don't need extra left/right context for TDNN systems. chunk_left_context=0 chunk_right_context=0 dropout_schedule='0,0@0.20,0.3@0.50,0' num_epochs=15 # training options srand=0 remove_egs=true # End configuration section. echo "$0 $@" # Print the command line for logging . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF fi local/nnet3/run_ivector_common.sh --stage $stage \ --train-set $train_set \ --gmm $gmm || exit 1; gmm_dir=exp/$gmm ali_dir=exp/${gmm}_ali_${train_set}_sp tree_dir=exp/chain/tree_sp lang=data/lang_chain lat_dir=exp/chain/${gmm}_${train_set}_sp_lats dir=exp/chain/tdnn_${affix} train_data_dir=data/${train_set}_sp_hires train_ivector_dir=exp/nnet3/ivectors_${train_set}_sp_hires lores_train_data_dir=data/${train_set}_sp for f in $gmm_dir/final.mdl $train_data_dir/feats.scp $train_ivector_dir/ivector_online.scp \ $lores_train_data_dir/feats.scp $ali_dir/ali.1.gz; do [ ! -f $f ] && echo "$0: expected file $f to exist" && exit 1 done if [ $stage -le 9 ]; then echo "$0: creating lang directory $lang with chain-type topology" # Create a version of the lang/ directory that has one state per phone in the # topo file. [note, it really has two states.. the first one is only repeated # once, the second one has zero or more repeats.] if [ -d $lang ]; then if [ $lang/L.fst -nt data/lang_test/L.fst ]; then echo "$0: $lang already exists, not overwriting it; continuing" else echo "$0: $lang already exists and seems to be older than data/lang_test ..." echo " ... not sure what to do. Exiting." exit 1; fi else cp -r data/lang_test $lang silphonelist=$(cat $lang/phones/silence.csl) || exit 1; nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1; # Use our special topology... note that later on may have to tune this # topology. steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo fi fi if [ $stage -le 10 ]; then # Get the alignments as lattices (gives the chain training more freedom). # use the same num-jobs as the alignments steps/align_fmllr_lats.sh --nj 50 --cmd "$train_cmd" ${lores_train_data_dir} \ data/lang $gmm_dir $lat_dir rm $lat_dir/fsts.*.gz # save space fi if [ $stage -le 11 ]; then # Build a tree using our new topology. We know we have alignments for the # speed-perturbed data (local/nnet3/run_ivector_common.sh made them), so use # those. The num-leaves is always somewhat less than the num-leaves from # the GMM baseline. if [ -f $tree_dir/final.mdl ]; then echo "$0: $tree_dir/final.mdl already exists, refusing to overwrite it." exit 1; fi steps/nnet3/chain/build_tree.sh \ --frame-subsampling-factor 3 \ --context-opts "--context-width=2 --central-position=1" \ --cmd "$train_cmd" 3500 ${lores_train_data_dir} \ $lang $ali_dir $tree_dir fi if [ $stage -le 12 ]; then mkdir -p $dir echo "$0: creating neural net configs using the xconfig parser"; num_targets=$(tree-info $tree_dir/tree | grep num-pdfs | awk '{print $2}') learning_rate_factor=$(echo "print (0.5/$xent_regularize)" | python) opts="l2-regularize=0.08 dropout-per-dim=true dropout-per-dim-continuous=true" linear_opts="orthonormal-constraint=-1.0" output_opts="l2-regularize=0.04" mkdir -p $dir/configs cat <<EOF > $dir/configs/network.xconfig input dim=50 name=ivector input dim=40 name=input # please note that it is important to have input layer with the name=input # as the layer immediately preceding the fixed-affine-layer to enable # the use of short notation for the descriptor fixed-affine-layer name=lda input=Append(-1,0,1,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat # the first splicing is moved before the lda layer, so no splicing here relu-batchnorm-dropout-layer name=tdnn1 $opts dim=768 linear-component name=tdnn2l dim=256 $linear_opts input=Append(-1,0) relu-batchnorm-dropout-layer name=tdnn2 $opts input=Append(0,1) dim=768 linear-component name=tdnn3l dim=256 $linear_opts relu-batchnorm-dropout-layer name=tdnn3 $opts dim=768 linear-component name=tdnn4l dim=256 $linear_opts input=Append(-1,0) relu-batchnorm-dropout-layer name=tdnn4 $opts input=Append(0,1) dim=768 linear-component name=tdnn5l dim=256 $linear_opts relu-batchnorm-dropout-layer name=tdnn5 $opts dim=768 input=Append(0, tdnn3l) linear-component name=tdnn6l dim=256 $linear_opts input=Append(-3,0) relu-batchnorm-dropout-layer name=tdnn6 $opts input=Append(0,3) dim=1024 linear-component name=tdnn7l dim=256 $linear_opts input=Append(-3,0) relu-batchnorm-dropout-layer name=tdnn7 $opts input=Append(0,3,tdnn6l,tdnn4l,tdnn2l) dim=768 linear-component name=tdnn8l dim=256 $linear_opts input=Append(-3,0) relu-batchnorm-dropout-layer name=tdnn8 $opts input=Append(0,3) dim=1024 linear-component name=tdnn9l dim=256 $linear_opts input=Append(-3,0) relu-batchnorm-dropout-layer name=tdnn9 $opts input=Append(0,3,tdnn8l,tdnn6l,tdnn5l) dim=768 linear-component name=tdnn10l dim=256 $linear_opts input=Append(-3,0) relu-batchnorm-dropout-layer name=tdnn10 $opts input=Append(0,3) dim=1024 linear-component name=tdnn11l dim=256 $linear_opts input=Append(-3,0) relu-batchnorm-dropout-layer name=tdnn11 $opts input=Append(0,3,tdnn10l,tdnn9l,tdnn7l) dim=768 linear-component name=prefinal-l dim=256 $linear_opts relu-batchnorm-layer name=prefinal-chain input=prefinal-l $opts dim=1024 output-layer name=output include-log-softmax=false dim=$num_targets bottleneck-dim=256 max-change=1.5 $output_opts # adding the layers for xent branch # This block prints the configs for a separate output that will be # trained with a cross-entropy objective in the 'chain' models... this # has the effect of regularizing the hidden parts of the model. we use # 0.5 / args.xent_regularize as the learning rate factor- the factor of # 0.5 / args.xent_regularize is suitable as it means the xent # final-layer learns at a rate independent of the regularization # constant; and the 0.5 was tuned so as to make the relative progress # similar in the xent and regular final layers. relu-batchnorm-layer name=prefinal-xent input=prefinal-l $opts dim=1024 output-layer name=output-xent $output_opts dim=$num_targets learning-rate-factor=$learning_rate_factor bottleneck-dim=256 max-change=1.5 EOF steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/ fi if [ $stage -le 13 ]; then steps/nnet3/chain/train.py --stage=$train_stage \ --cmd="$decode_cmd" \ --feat.online-ivector-dir=$train_ivector_dir \ --feat.cmvn-opts="--norm-means=false --norm-vars=false" \ --chain.xent-regularize $xent_regularize \ --chain.leaky-hmm-coefficient=0.1 \ --chain.l2-regularize=0.00005 \ --chain.apply-deriv-weights=false \ --chain.lm-opts="--num-extra-lm-states=2000" \ --trainer.dropout-schedule $dropout_schedule \ --trainer.add-option="--optimization.memory-compression-level=2" \ --trainer.srand=$srand \ --trainer.max-param-change=2.0 \ --trainer.num-epochs=$num_epochs \ --trainer.frames-per-iter=3000000 \ --trainer.optimization.num-jobs-initial=2 \ --trainer.optimization.num-jobs-final=5 \ --trainer.optimization.initial-effective-lrate=0.001 \ --trainer.optimization.final-effective-lrate=0.0001 \ --trainer.num-chunk-per-minibatch=256,128,64 \ --trainer.optimization.momentum=0.0 \ --egs.chunk-width=$chunk_width \ --egs.chunk-left-context=0 \ --egs.chunk-right-context=0 \ --egs.chunk-left-context-initial=0 \ --egs.chunk-right-context-final=0 \ --egs.dir="$common_egs_dir" \ --egs.opts="--frames-overlap-per-eg 0" \ --cleanup.remove-egs=$remove_egs \ --use-gpu=true \ --reporting.email="$reporting_email" \ --feat-dir=$train_data_dir \ --tree-dir=$tree_dir \ --lat-dir=$lat_dir \ --dir=$dir || exit 1; fi if [ $stage -le 14 ]; then # Note: it's not important to give mkgraph.sh the lang directory with the # matched topology (since it gets the topology file from the model). utils/mkgraph.sh \ --self-loop-scale 1.0 data/lang_test \ $tree_dir $tree_dir/graph || exit 1; fi if [ $stage -le 15 ]; then frames_per_chunk=$(echo $chunk_width | cut -d, -f1) rm $dir/.error 2>/dev/null || true for data in $test_sets; do ( nspk=$(wc -l <data/${data}_hires/spk2utt) steps/nnet3/decode.sh \ --acwt 1.0 --post-decode-acwt 10.0 \ --extra-left-context 0 --extra-right-context 0 \ --extra-left-context-initial 0 \ --extra-right-context-final 0 \ --frames-per-chunk $frames_per_chunk \ --nj $nspk --cmd "$decode_cmd" --num-threads 4 \ --online-ivector-dir exp/nnet3/ivectors_${data}_hires \ $tree_dir/graph data/${data}_hires ${dir}/decode_${data} || exit 1 ) || touch $dir/.error & done wait [ -f $dir/.error ] && echo "$0: there was a problem while decoding" && exit 1 fi if [ $stage -le 16 ]; then for data in $test_sets; do ( steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \ data/lang_test/ data/lang_big/ data/${data} \ ${dir}/decode_${data} ${dir}/decode_${data}.rescored ) done wait fi exit 0; |