run_tdnn_1b.sh
10.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
#!/bin/bash
# Copyright 2017-2018 Johns Hopkins University (author: Daniel Povey)
# 2017-2018 Yiming Wang
# 1b is trying a more complicated architecture with factored parameter matrices with dropout.
# cat exp/chain/tdnn_1b/decode_dev/scoring_kaldi/best_wer
# %WER 17.73 [ 1951 / 11006, 247 ins, 364 del, 1340 sub ] exp/chain/tdnn_1b/decode_dev/wer_10_0.0
# cat exp/chain/tdnn_1b/decode_dev.rescored/scoring_kaldi/best_wer
# %WER 16.14 [ 1776 / 11006, 210 ins, 377 del, 1189 sub ] exp/chain/tdnn_1b/decode_dev.rescored/wer_10_0.5
# steps/info/chain_dir_info.pl exp/chain/tdnn_1b
# exp/chain/tdnn_1b: num-iters=38 nj=2..5 num-params=12.0M dim=40+50->1592 combine=-0.062->-0.061 (over 2) xent:train/valid[24,37,final]=(-1.28,-1.03,-0.988/-1.61,-1.43,-1.36) logprob:train/valid[24,37,final]=(-0.069,-0.053,-0.049/-0.128,-0.124,-0.120)
set -e -o pipefail
# First the options that are passed through to run_ivector_common.sh
# (some of which are also used in this script directly).
stage=0
nj=30
train_set=train
test_sets="dev"
gmm=tri3b
# Options which are not passed through to run_ivector_common.sh
affix=1b #affix for TDNN+LSTM directory e.g. "1a" or "1b", in case we change the configuration.
common_egs_dir=
reporting_email=
# LSTM/chain options
train_stage=-10
get_egs_stage=-10
xent_regularize=0.1
# training chunk-options
chunk_width=140,100,160
# we don't need extra left/right context for TDNN systems.
chunk_left_context=0
chunk_right_context=0
dropout_schedule='0,0@0.20,0.3@0.50,0'
num_epochs=15
# training options
srand=0
remove_egs=true
# End configuration section.
echo "$0 $@" # Print the command line for logging
. ./cmd.sh
. ./path.sh
. ./utils/parse_options.sh
if ! cuda-compiled; then
cat <<EOF && exit 1
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
If you want to use GPUs (and have them), go to src/, and configure and make on a machine
where "nvcc" is installed.
EOF
fi
local/nnet3/run_ivector_common.sh --stage $stage \
--train-set $train_set \
--gmm $gmm || exit 1;
gmm_dir=exp/$gmm
ali_dir=exp/${gmm}_ali_${train_set}_sp
tree_dir=exp/chain/tree_sp
lang=data/lang_chain
lat_dir=exp/chain/${gmm}_${train_set}_sp_lats
dir=exp/chain/tdnn_${affix}
train_data_dir=data/${train_set}_sp_hires
train_ivector_dir=exp/nnet3/ivectors_${train_set}_sp_hires
lores_train_data_dir=data/${train_set}_sp
for f in $gmm_dir/final.mdl $train_data_dir/feats.scp $train_ivector_dir/ivector_online.scp \
$lores_train_data_dir/feats.scp $ali_dir/ali.1.gz; do
[ ! -f $f ] && echo "$0: expected file $f to exist" && exit 1
done
if [ $stage -le 9 ]; then
echo "$0: creating lang directory $lang with chain-type topology"
# Create a version of the lang/ directory that has one state per phone in the
# topo file. [note, it really has two states.. the first one is only repeated
# once, the second one has zero or more repeats.]
if [ -d $lang ]; then
if [ $lang/L.fst -nt data/lang_test/L.fst ]; then
echo "$0: $lang already exists, not overwriting it; continuing"
else
echo "$0: $lang already exists and seems to be older than data/lang_test ..."
echo " ... not sure what to do. Exiting."
exit 1;
fi
else
cp -r data/lang_test $lang
silphonelist=$(cat $lang/phones/silence.csl) || exit 1;
nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1;
# Use our special topology... note that later on may have to tune this
# topology.
steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo
fi
fi
if [ $stage -le 10 ]; then
# Get the alignments as lattices (gives the chain training more freedom).
# use the same num-jobs as the alignments
steps/align_fmllr_lats.sh --nj 50 --cmd "$train_cmd" ${lores_train_data_dir} \
data/lang $gmm_dir $lat_dir
rm $lat_dir/fsts.*.gz # save space
fi
if [ $stage -le 11 ]; then
# Build a tree using our new topology. We know we have alignments for the
# speed-perturbed data (local/nnet3/run_ivector_common.sh made them), so use
# those. The num-leaves is always somewhat less than the num-leaves from
# the GMM baseline.
if [ -f $tree_dir/final.mdl ]; then
echo "$0: $tree_dir/final.mdl already exists, refusing to overwrite it."
exit 1;
fi
steps/nnet3/chain/build_tree.sh \
--frame-subsampling-factor 3 \
--context-opts "--context-width=2 --central-position=1" \
--cmd "$train_cmd" 3500 ${lores_train_data_dir} \
$lang $ali_dir $tree_dir
fi
if [ $stage -le 12 ]; then
mkdir -p $dir
echo "$0: creating neural net configs using the xconfig parser";
num_targets=$(tree-info $tree_dir/tree | grep num-pdfs | awk '{print $2}')
learning_rate_factor=$(echo "print (0.5/$xent_regularize)" | python)
opts="l2-regularize=0.08 dropout-per-dim=true dropout-per-dim-continuous=true"
linear_opts="orthonormal-constraint=-1.0"
output_opts="l2-regularize=0.04"
mkdir -p $dir/configs
cat <<EOF > $dir/configs/network.xconfig
input dim=50 name=ivector
input dim=40 name=input
# please note that it is important to have input layer with the name=input
# as the layer immediately preceding the fixed-affine-layer to enable
# the use of short notation for the descriptor
fixed-affine-layer name=lda input=Append(-1,0,1,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat
# the first splicing is moved before the lda layer, so no splicing here
relu-batchnorm-dropout-layer name=tdnn1 $opts dim=768
linear-component name=tdnn2l dim=256 $linear_opts input=Append(-1,0)
relu-batchnorm-dropout-layer name=tdnn2 $opts input=Append(0,1) dim=768
linear-component name=tdnn3l dim=256 $linear_opts
relu-batchnorm-dropout-layer name=tdnn3 $opts dim=768
linear-component name=tdnn4l dim=256 $linear_opts input=Append(-1,0)
relu-batchnorm-dropout-layer name=tdnn4 $opts input=Append(0,1) dim=768
linear-component name=tdnn5l dim=256 $linear_opts
relu-batchnorm-dropout-layer name=tdnn5 $opts dim=768 input=Append(0, tdnn3l)
linear-component name=tdnn6l dim=256 $linear_opts input=Append(-3,0)
relu-batchnorm-dropout-layer name=tdnn6 $opts input=Append(0,3) dim=1024
linear-component name=tdnn7l dim=256 $linear_opts input=Append(-3,0)
relu-batchnorm-dropout-layer name=tdnn7 $opts input=Append(0,3,tdnn6l,tdnn4l,tdnn2l) dim=768
linear-component name=tdnn8l dim=256 $linear_opts input=Append(-3,0)
relu-batchnorm-dropout-layer name=tdnn8 $opts input=Append(0,3) dim=1024
linear-component name=tdnn9l dim=256 $linear_opts input=Append(-3,0)
relu-batchnorm-dropout-layer name=tdnn9 $opts input=Append(0,3,tdnn8l,tdnn6l,tdnn5l) dim=768
linear-component name=tdnn10l dim=256 $linear_opts input=Append(-3,0)
relu-batchnorm-dropout-layer name=tdnn10 $opts input=Append(0,3) dim=1024
linear-component name=tdnn11l dim=256 $linear_opts input=Append(-3,0)
relu-batchnorm-dropout-layer name=tdnn11 $opts input=Append(0,3,tdnn10l,tdnn9l,tdnn7l) dim=768
linear-component name=prefinal-l dim=256 $linear_opts
relu-batchnorm-layer name=prefinal-chain input=prefinal-l $opts dim=1024
output-layer name=output include-log-softmax=false dim=$num_targets bottleneck-dim=256 max-change=1.5 $output_opts
# adding the layers for xent branch
# This block prints the configs for a separate output that will be
# trained with a cross-entropy objective in the 'chain' models... this
# has the effect of regularizing the hidden parts of the model. we use
# 0.5 / args.xent_regularize as the learning rate factor- the factor of
# 0.5 / args.xent_regularize is suitable as it means the xent
# final-layer learns at a rate independent of the regularization
# constant; and the 0.5 was tuned so as to make the relative progress
# similar in the xent and regular final layers.
relu-batchnorm-layer name=prefinal-xent input=prefinal-l $opts dim=1024
output-layer name=output-xent $output_opts dim=$num_targets learning-rate-factor=$learning_rate_factor bottleneck-dim=256 max-change=1.5
EOF
steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/
fi
if [ $stage -le 13 ]; then
steps/nnet3/chain/train.py --stage=$train_stage \
--cmd="$decode_cmd" \
--feat.online-ivector-dir=$train_ivector_dir \
--feat.cmvn-opts="--norm-means=false --norm-vars=false" \
--chain.xent-regularize $xent_regularize \
--chain.leaky-hmm-coefficient=0.1 \
--chain.l2-regularize=0.00005 \
--chain.apply-deriv-weights=false \
--chain.lm-opts="--num-extra-lm-states=2000" \
--trainer.dropout-schedule $dropout_schedule \
--trainer.add-option="--optimization.memory-compression-level=2" \
--trainer.srand=$srand \
--trainer.max-param-change=2.0 \
--trainer.num-epochs=$num_epochs \
--trainer.frames-per-iter=3000000 \
--trainer.optimization.num-jobs-initial=2 \
--trainer.optimization.num-jobs-final=5 \
--trainer.optimization.initial-effective-lrate=0.001 \
--trainer.optimization.final-effective-lrate=0.0001 \
--trainer.num-chunk-per-minibatch=256,128,64 \
--trainer.optimization.momentum=0.0 \
--egs.chunk-width=$chunk_width \
--egs.chunk-left-context=0 \
--egs.chunk-right-context=0 \
--egs.chunk-left-context-initial=0 \
--egs.chunk-right-context-final=0 \
--egs.dir="$common_egs_dir" \
--egs.opts="--frames-overlap-per-eg 0" \
--cleanup.remove-egs=$remove_egs \
--use-gpu=true \
--reporting.email="$reporting_email" \
--feat-dir=$train_data_dir \
--tree-dir=$tree_dir \
--lat-dir=$lat_dir \
--dir=$dir || exit 1;
fi
if [ $stage -le 14 ]; then
# Note: it's not important to give mkgraph.sh the lang directory with the
# matched topology (since it gets the topology file from the model).
utils/mkgraph.sh \
--self-loop-scale 1.0 data/lang_test \
$tree_dir $tree_dir/graph || exit 1;
fi
if [ $stage -le 15 ]; then
frames_per_chunk=$(echo $chunk_width | cut -d, -f1)
rm $dir/.error 2>/dev/null || true
for data in $test_sets; do
(
nspk=$(wc -l <data/${data}_hires/spk2utt)
steps/nnet3/decode.sh \
--acwt 1.0 --post-decode-acwt 10.0 \
--extra-left-context 0 --extra-right-context 0 \
--extra-left-context-initial 0 \
--extra-right-context-final 0 \
--frames-per-chunk $frames_per_chunk \
--nj $nspk --cmd "$decode_cmd" --num-threads 4 \
--online-ivector-dir exp/nnet3/ivectors_${data}_hires \
$tree_dir/graph data/${data}_hires ${dir}/decode_${data} || exit 1
) || touch $dir/.error &
done
wait
[ -f $dir/.error ] && echo "$0: there was a problem while decoding" && exit 1
fi
if [ $stage -le 16 ]; then
for data in $test_sets; do
(
steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \
data/lang_test/ data/lang_big/ data/${data} \
${dir}/decode_${data} ${dir}/decode_${data}.rescored
)
done
wait
fi
exit 0;