Blame view
egs/iban/s5/local/nnet3/run_ivector_common.sh
4.9 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
#!/bin/bash set -euo pipefail # This script is called from local/nnet3/run_tdnn.sh and # local/chain/run_tdnn.sh (and may eventually be called by more # scripts). It contains the common feature preparation and # iVector-related parts of the script. See those scripts for examples # of usage. stage=0 train_set=train test_sets="dev" gmm=tri3b . ./cmd.sh . ./path.sh . ./utils/parse_options.sh gmm_dir=exp/${gmm} ali_dir=exp/${gmm}_ali_${train_set}_sp for f in data/${train_set}/feats.scp ${gmm_dir}/final.mdl; do if [ ! -f $f ]; then echo "$0: expected file $f to exist" exit 1 fi done if [ $stage -le 1 ]; then # Although the nnet will be trained by high resolution data, we still have to # perturb the normal data to get the alignment _sp stands for speed-perturbed echo "$0: preparing directory for low-resolution speed-perturbed data (for alignment)" utils/data/perturb_data_dir_speed_3way.sh data/${train_set} data/${train_set}_sp echo "$0: making MFCC features for low-resolution speed-perturbed data" steps/make_mfcc.sh --cmd "$train_cmd" --nj 17 data/${train_set}_sp || exit 1; steps/compute_cmvn_stats.sh data/${train_set}_sp || exit 1; utils/fix_data_dir.sh data/${train_set}_sp fi if [ $stage -le 2 ]; then echo "$0: aligning with the perturbed low-resolution data" steps/align_fmllr.sh --nj 16 --cmd "$train_cmd" \ data/${train_set}_sp data/lang $gmm_dir $ali_dir || exit 1 fi if [ $stage -le 3 ]; then # Create high-resolution MFCC features (with 40 cepstra instead of 13). # this shows how you can split across multiple file-systems. echo "$0: creating high-resolution MFCC features" mfccdir=data/${train_set}_sp_hires/data for datadir in ${train_set}_sp ${test_sets}; do utils/copy_data_dir.sh data/$datadir data/${datadir}_hires done # do volume-perturbation on the training data prior to extracting hires # features; this helps make trained nnets more invariant to test data volume. #utils/data/perturb_data_dir_volume.sh data/${train_set}_sp_hires || exit 1; for datadir in ${train_set}_sp ${test_sets}; do steps/make_mfcc.sh --nj 16 --mfcc-config conf/mfcc_hires.conf \ --cmd "$train_cmd" data/${datadir}_hires || exit 1; steps/compute_cmvn_stats.sh data/${datadir}_hires || exit 1; utils/fix_data_dir.sh data/${datadir}_hires || exit 1; done fi if [ $stage -le 4 ]; then # Train a small system just for its LDA+MLLT transform. We use --num-iters 13 # because after we get the transform (12th iter is the last), any further # training is pointless. steps/train_lda_mllt.sh --cmd "$train_cmd" --num-iters 13 \ --realign-iters "" --splice-opts "--left-context=3 --right-context=3" \ 5000 10000 data/${train_set}_sp_hires data/lang \ $ali_dir exp/nnet3/tri5b || exit 1 fi if [ $stage -le 5 ]; then echo "$0: training the diagonal UBM." steps/online/nnet2/train_diag_ubm.sh --cmd "$train_cmd" --nj 16 --num-frames 200000 \ data/${train_set}_sp_hires 256 exp/nnet3/tri5b exp/nnet3/diag_ubm || exit 1 fi if [ $stage -le 6 ]; then # Train the iVector extractor. Use all of the speed-perturbed data since iVector extractors # can be sensitive to the amount of data. The iVector dimension of 50. # even though $nj is just 10, each job uses multiple processes and threads. echo "$0: training the iVector extractor" steps/online/nnet2/train_ivector_extractor.sh --cmd "$train_cmd" \ --nj 10 --num-processes 1 --num-threads 2 --ivector-dim 50 \ data/${train_set}_sp_hires exp/nnet3/diag_ubm exp/nnet3/extractor || exit 1; fi if [ $stage -le 7 ]; then # We extract iVectors on the speed-perturbed training data after combining # short segments, which will be what we train the system on. With # --utts-per-spk-max 2, the script pairs the utterances into twos, and treats # each of these pairs as one speaker; this gives more diversity in iVectors.. # Note that these are extracted 'online'. # note, we don't encode the 'max2' in the name of the ivectordir even though # that's the data we extract the ivectors from, as it's still going to be # valid for the non-'max2' data, the utterance list is the same. ivectordir=exp/nnet3/ivectors_${train_set}_sp_hires # having a larger number of speakers is helpful for generalization, and to # handle per-utterance decoding well (iVector starts at zero). temp_data_root=${ivectordir} utils/data/modify_speaker_info.sh --utts-per-spk-max 2 \ data/${train_set}_sp_hires ${temp_data_root}/${train_set}_sp_hires_max2 steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj 16 \ ${temp_data_root}/${train_set}_sp_hires_max2 \ exp/nnet3/extractor $ivectordir # Also extract iVectors for the test data, but in this case we don't need the speed # perturbation (sp). for data in $test_sets; do steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj 6 \ data/${data}_hires exp/nnet3/extractor exp/nnet3/ivectors_${data}_hires done fi exit 0; |