Blame view

egs/librispeech/s5/local/chain/tuning/run_cnn_tdnn_1a.sh 12.1 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
  #!/bin/bash
  
  # This is based on tdnn_1d_sp, but adding cnn as the front-end.
  # The cnn-tdnn-f (tdnn_cnn_1a_sp) outperforms the tdnn-f (tdnn_1d_sp).
  
  # bash local/chain/compare_wer.sh exp/chain_cleaned/tdnn_1d_sp exp/chain_cleaned/tdnn_cnn_1a_sp/
  # System                         tdnn_1d_sp  tdnn_cnn_1a_sp
  # WER on dev(fglarge)               3.29          3.34
  # WER on dev(tglarge)               3.44          3.39
  # WER on dev(tgmed)                 4.22          4.29
  # WER on dev(tgsmall)               4.72          4.77
  # WER on dev_other(fglarge)         8.71          8.62
  # WER on dev_other(tglarge)         9.05          9.00
  # WER on dev_other(tgmed)          11.09         10.93
  # WER on dev_other(tgsmall)        12.13         12.02
  # WER on test(fglarge)              3.80          3.69
  # WER on test(tglarge)              3.89          3.80
  # WER on test(tgmed)                4.72          4.64
  # WER on test(tgsmall)              5.19          5.16      
  # WER on test_other(fglarge)        8.76          8.71
  # WER on test_other(tglarge)        9.19          9.11
  # WER on test_other(tgmed)         11.22         11.00
  # WER on test_other(tgsmall)       12.24         12.16
  # Final train prob               -0.0378       -0.0420
  # Final valid prob               -0.0374       -0.0400
  # Final train prob (xent)        -0.6099       -0.6881
  # Final valid prob (xent)        -0.6353       -0.7180
  # Num-parameters                22623456      18100736
  
  
  set -e
  
  # configs for 'chain'
  stage=0
  decode_nj=50
  train_set=train_960_cleaned
  gmm=tri6b_cleaned
  nnet3_affix=_cleaned
  
  # The rest are configs specific to this script.  Most of the parameters
  # are just hardcoded at this level, in the commands below.
  affix=cnn_1a
  tree_affix=
  train_stage=-10
  get_egs_stage=-10
  decode_iter=
  
  # TDNN options
  frames_per_eg=150,110,100
  remove_egs=true
  common_egs_dir=
  xent_regularize=0.1
  dropout_schedule='0,0@0.20,0.5@0.50,0'
  
  test_online_decoding=true  # if true, it will run the last decoding stage.
  
  # End configuration section.
  echo "$0 $@"  # Print the command line for logging
  
  . ./cmd.sh
  . ./path.sh
  . ./utils/parse_options.sh
  
  if ! cuda-compiled; then
    cat <<EOF && exit 1
  This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
  If you want to use GPUs (and have them), go to src/, and configure and make on a machine
  where "nvcc" is installed.
  EOF
  fi
  
  # The iVector-extraction and feature-dumping parts are the same as the standard
  # nnet3 setup, and you can skip them by setting "--stage 11" if you have already
  # run those things.
  
  local/nnet3/run_ivector_common.sh --stage $stage \
                                    --train-set $train_set \
                                    --gmm $gmm \
                                    --num-threads-ubm 6 --num-processes 3 \
                                    --nnet3-affix "$nnet3_affix" || exit 1;
  
  gmm_dir=exp/$gmm
  ali_dir=exp/${gmm}_ali_${train_set}_sp
  tree_dir=exp/chain${nnet3_affix}/tree_sp${tree_affix:+_$tree_affix}
  lang=data/lang_chain
  lat_dir=exp/chain${nnet3_affix}/${gmm}_${train_set}_sp_lats
  dir=exp/chain${nnet3_affix}/tdnn${affix:+_$affix}_sp
  train_data_dir=data/${train_set}_sp_hires
  lores_train_data_dir=data/${train_set}_sp
  train_ivector_dir=exp/nnet3${nnet3_affix}/ivectors_${train_set}_sp_hires
  
  # if we are using the speed-perturbed data we need to generate
  # alignments for it.
  
  for f in $gmm_dir/final.mdl $train_data_dir/feats.scp $train_ivector_dir/ivector_online.scp \
      $lores_train_data_dir/feats.scp $ali_dir/ali.1.gz; do
    [ ! -f $f ] && echo "$0: expected file $f to exist" && exit 1
  done
  
  # Please take this as a reference on how to specify all the options of
  # local/chain/run_chain_common.sh
  local/chain/run_chain_common.sh --stage $stage \
                                  --gmm-dir $gmm_dir \
                                  --ali-dir $ali_dir \
                                  --lores-train-data-dir ${lores_train_data_dir} \
                                  --lang $lang \
                                  --lat-dir $lat_dir \
                                  --num-leaves 7000 \
                                  --tree-dir $tree_dir || exit 1;
  
  if [ $stage -le 14 ]; then
    echo "$0: creating neural net configs using the xconfig parser";
  
    num_targets=$(tree-info $tree_dir/tree | grep num-pdfs | awk '{print $2}')
    learning_rate_factor=$(echo "print (0.5/$xent_regularize)" | python)
    cnn_opts="l2-regularize=0.01"
    ivector_affine_opts="l2-regularize=0.0"
    affine_opts="l2-regularize=0.008 dropout-proportion=0.0 dropout-per-dim=true dropout-per-dim-continuous=true"
    tdnnf_first_opts="l2-regularize=0.008 dropout-proportion=0.0 bypass-scale=0.0"
    tdnnf_opts="l2-regularize=0.008 dropout-proportion=0.0 bypass-scale=0.75"
    linear_opts="l2-regularize=0.008 orthonormal-constraint=-1.0"
    prefinal_opts="l2-regularize=0.008"
    output_opts="l2-regularize=0.005"
  
    mkdir -p $dir/configs
  
    cat <<EOF > $dir/configs/network.xconfig
    input dim=100 name=ivector
    input dim=40 name=input
  
    # MFCC to filterbank
    idct-layer name=idct input=input dim=40 cepstral-lifter=22 affine-transform-file=$dir/configs/idct.mat
  
    linear-component name=ivector-linear $ivector_affine_opts dim=200 input=ReplaceIndex(ivector, t, 0)
    batchnorm-component name=ivector-batchnorm target-rms=0.025
    batchnorm-component name=idct-batchnorm input=idct
  
    combine-feature-maps-layer name=combine_inputs input=Append(idct-batchnorm, ivector-batchnorm) num-filters1=1 num-filters2=5 height=40
    conv-relu-batchnorm-layer name=cnn1 $cnn_opts height-in=40 height-out=40 time-offsets=-1,0,1 height-offsets=-1,0,1 num-filters-out=64
    conv-relu-batchnorm-layer name=cnn2 $cnn_opts height-in=40 height-out=40 time-offsets=-1,0,1 height-offsets=-1,0,1 num-filters-out=64
    conv-relu-batchnorm-layer name=cnn3 $cnn_opts height-in=40 height-out=20 height-subsample-out=2 time-offsets=-1,0,1 height-offsets=-1,0,1 num-filters-out=128
    conv-relu-batchnorm-layer name=cnn4 $cnn_opts height-in=20 height-out=20 time-offsets=-1,0,1 height-offsets=-1,0,1 num-filters-out=128
    conv-relu-batchnorm-layer name=cnn5 $cnn_opts height-in=20 height-out=10 height-subsample-out=2 time-offsets=-1,0,1 height-offsets=-1,0,1 num-filters-out=256
    conv-relu-batchnorm-layer name=cnn6 $cnn_opts height-in=10 height-out=10 time-offsets=-1,0,1 height-offsets=-1,0,1 num-filters-out=256
  
    # the first TDNN-F layer has no bypass
    tdnnf-layer name=tdnnf7 $tdnnf_first_opts dim=1536 bottleneck-dim=256 time-stride=0
    tdnnf-layer name=tdnnf8 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
    tdnnf-layer name=tdnnf9 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
    tdnnf-layer name=tdnnf10 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
    tdnnf-layer name=tdnnf11 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
    tdnnf-layer name=tdnnf12 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
    tdnnf-layer name=tdnnf13 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
    tdnnf-layer name=tdnnf14 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
    tdnnf-layer name=tdnnf15 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
    tdnnf-layer name=tdnnf16 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
    tdnnf-layer name=tdnnf17 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
    tdnnf-layer name=tdnnf18 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
    linear-component name=prefinal-l dim=256 $linear_opts
  
    prefinal-layer name=prefinal-chain input=prefinal-l $prefinal_opts big-dim=1536 small-dim=256
    output-layer name=output include-log-softmax=false dim=$num_targets $output_opts
  
    prefinal-layer name=prefinal-xent input=prefinal-l $prefinal_opts big-dim=1536 small-dim=256
    output-layer name=output-xent dim=$num_targets learning-rate-factor=$learning_rate_factor $output_opts
  EOF
  
    steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/
  fi
  
  if [ $stage -le 15 ]; then
    if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
      utils/create_split_dir.pl \
       /export/b{09,10,11,12}/$USER/kaldi-data/egs/swbd-$(date +'%m_%d_%H_%M')/s5c/$dir/egs/storage $dir/egs/storage
    fi
  
    steps/nnet3/chain/train.py --stage $train_stage \
      --use-gpu "wait" \
      --cmd "$decode_cmd" \
      --feat.online-ivector-dir $train_ivector_dir \
      --feat.cmvn-opts "--norm-means=false --norm-vars=false" \
      --chain.xent-regularize $xent_regularize \
      --chain.leaky-hmm-coefficient 0.1 \
      --chain.l2-regularize 0.0 \
      --chain.apply-deriv-weights false \
      --chain.lm-opts="--num-extra-lm-states=2000" \
      --egs.dir "$common_egs_dir" \
      --egs.stage $get_egs_stage \
      --egs.opts "--frames-overlap-per-eg 0 --constrained false" \
      --egs.chunk-width $frames_per_eg \
      --trainer.dropout-schedule $dropout_schedule \
      --trainer.add-option="--optimization.memory-compression-level=2" \
      --trainer.num-chunk-per-minibatch 64 \
      --trainer.frames-per-iter 2500000 \
      --trainer.num-epochs 4 \
      --trainer.optimization.num-jobs-initial 3 \
      --trainer.optimization.num-jobs-final 16 \
      --trainer.optimization.initial-effective-lrate 0.00015 \
      --trainer.optimization.final-effective-lrate 0.000015 \
      --trainer.max-param-change 2.0 \
      --cleanup.remove-egs $remove_egs \
      --feat-dir $train_data_dir \
      --tree-dir $tree_dir \
      --lat-dir $lat_dir \
      --dir $dir  || exit 1;
  
  fi
  
  graph_dir=$dir/graph_tgsmall
  if [ $stage -le 16 ]; then
    # Note: it might appear that this $lang directory is mismatched, and it is as
    # far as the 'topo' is concerned, but this script doesn't read the 'topo' from
    # the lang directory.
    utils/mkgraph.sh --self-loop-scale 1.0 --remove-oov data/lang_test_tgsmall $dir $graph_dir
    # remove <UNK> from the graph, and convert back to const-FST.
    fstrmsymbols --apply-to-output=true --remove-arcs=true "echo 3|" $graph_dir/HCLG.fst - | \
      fstconvert --fst_type=const > $graph_dir/temp.fst
    mv $graph_dir/temp.fst $graph_dir/HCLG.fst
  fi
  
  iter_opts=
  if [ ! -z $decode_iter ]; then
    iter_opts=" --iter $decode_iter "
  fi
  if [ $stage -le 17 ]; then
    rm $dir/.error 2>/dev/null || true
    for decode_set in test_clean test_other dev_clean dev_other; do
        (
        steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \
            --nj $decode_nj --cmd "$decode_cmd" $iter_opts \
            --online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_${decode_set}_hires \
            $graph_dir data/${decode_set}_hires $dir/decode_${decode_set}${decode_iter:+_$decode_iter}_tgsmall || exit 1
        steps/lmrescore.sh --cmd "$decode_cmd" --self-loop-scale 1.0 data/lang_test_{tgsmall,tgmed} \
            data/${decode_set}_hires $dir/decode_${decode_set}${decode_iter:+_$decode_iter}_{tgsmall,tgmed} || exit 1
        steps/lmrescore_const_arpa.sh \
            --cmd "$decode_cmd" data/lang_test_{tgsmall,tglarge} \
            data/${decode_set}_hires $dir/decode_${decode_set}${decode_iter:+_$decode_iter}_{tgsmall,tglarge} || exit 1
        steps/lmrescore_const_arpa.sh \
            --cmd "$decode_cmd" data/lang_test_{tgsmall,fglarge} \
            data/${decode_set}_hires $dir/decode_${decode_set}${decode_iter:+_$decode_iter}_{tgsmall,fglarge} || exit 1
        ) || touch $dir/.error &
    done
    wait
    if [ -f $dir/.error ]; then
      echo "$0: something went wrong in decoding"
      exit 1
    fi
  fi
  
  if $test_online_decoding && [ $stage -le 18 ]; then
    # note: if the features change (e.g. you add pitch features), you will have to
    # change the options of the following command line.
    steps/online/nnet3/prepare_online_decoding.sh \
         --mfcc-config conf/mfcc_hires.conf \
         $lang exp/nnet3${nnet3_affix}/extractor $dir ${dir}_online
  
    rm $dir/.error 2>/dev/null || true
    for data in test_clean test_other dev_clean dev_other; do
      (
        nspk=$(wc -l <data/${data}_hires/spk2utt)
        # note: we just give it "data/${data}" as it only uses the wav.scp, the
        # feature type does not matter.
        steps/online/nnet3/decode.sh \
            --acwt 1.0 --post-decode-acwt 10.0 \
            --nj $nspk --cmd "$decode_cmd" \
            $graph_dir data/${data} ${dir}_online/decode_${data}_tgsmall || exit 1
  
      ) || touch $dir/.error &
    done
    wait
    if [ -f $dir/.error ]; then
      echo "$0: something went wrong in decoding"
      exit 1
    fi
  fi
  
  exit 0;