run_cnn_tdnn_1a.sh
12.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
#!/bin/bash
# This is based on tdnn_1d_sp, but adding cnn as the front-end.
# The cnn-tdnn-f (tdnn_cnn_1a_sp) outperforms the tdnn-f (tdnn_1d_sp).
# bash local/chain/compare_wer.sh exp/chain_cleaned/tdnn_1d_sp exp/chain_cleaned/tdnn_cnn_1a_sp/
# System tdnn_1d_sp tdnn_cnn_1a_sp
# WER on dev(fglarge) 3.29 3.34
# WER on dev(tglarge) 3.44 3.39
# WER on dev(tgmed) 4.22 4.29
# WER on dev(tgsmall) 4.72 4.77
# WER on dev_other(fglarge) 8.71 8.62
# WER on dev_other(tglarge) 9.05 9.00
# WER on dev_other(tgmed) 11.09 10.93
# WER on dev_other(tgsmall) 12.13 12.02
# WER on test(fglarge) 3.80 3.69
# WER on test(tglarge) 3.89 3.80
# WER on test(tgmed) 4.72 4.64
# WER on test(tgsmall) 5.19 5.16
# WER on test_other(fglarge) 8.76 8.71
# WER on test_other(tglarge) 9.19 9.11
# WER on test_other(tgmed) 11.22 11.00
# WER on test_other(tgsmall) 12.24 12.16
# Final train prob -0.0378 -0.0420
# Final valid prob -0.0374 -0.0400
# Final train prob (xent) -0.6099 -0.6881
# Final valid prob (xent) -0.6353 -0.7180
# Num-parameters 22623456 18100736
set -e
# configs for 'chain'
stage=0
decode_nj=50
train_set=train_960_cleaned
gmm=tri6b_cleaned
nnet3_affix=_cleaned
# The rest are configs specific to this script. Most of the parameters
# are just hardcoded at this level, in the commands below.
affix=cnn_1a
tree_affix=
train_stage=-10
get_egs_stage=-10
decode_iter=
# TDNN options
frames_per_eg=150,110,100
remove_egs=true
common_egs_dir=
xent_regularize=0.1
dropout_schedule='0,0@0.20,0.5@0.50,0'
test_online_decoding=true # if true, it will run the last decoding stage.
# End configuration section.
echo "$0 $@" # Print the command line for logging
. ./cmd.sh
. ./path.sh
. ./utils/parse_options.sh
if ! cuda-compiled; then
cat <<EOF && exit 1
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
If you want to use GPUs (and have them), go to src/, and configure and make on a machine
where "nvcc" is installed.
EOF
fi
# The iVector-extraction and feature-dumping parts are the same as the standard
# nnet3 setup, and you can skip them by setting "--stage 11" if you have already
# run those things.
local/nnet3/run_ivector_common.sh --stage $stage \
--train-set $train_set \
--gmm $gmm \
--num-threads-ubm 6 --num-processes 3 \
--nnet3-affix "$nnet3_affix" || exit 1;
gmm_dir=exp/$gmm
ali_dir=exp/${gmm}_ali_${train_set}_sp
tree_dir=exp/chain${nnet3_affix}/tree_sp${tree_affix:+_$tree_affix}
lang=data/lang_chain
lat_dir=exp/chain${nnet3_affix}/${gmm}_${train_set}_sp_lats
dir=exp/chain${nnet3_affix}/tdnn${affix:+_$affix}_sp
train_data_dir=data/${train_set}_sp_hires
lores_train_data_dir=data/${train_set}_sp
train_ivector_dir=exp/nnet3${nnet3_affix}/ivectors_${train_set}_sp_hires
# if we are using the speed-perturbed data we need to generate
# alignments for it.
for f in $gmm_dir/final.mdl $train_data_dir/feats.scp $train_ivector_dir/ivector_online.scp \
$lores_train_data_dir/feats.scp $ali_dir/ali.1.gz; do
[ ! -f $f ] && echo "$0: expected file $f to exist" && exit 1
done
# Please take this as a reference on how to specify all the options of
# local/chain/run_chain_common.sh
local/chain/run_chain_common.sh --stage $stage \
--gmm-dir $gmm_dir \
--ali-dir $ali_dir \
--lores-train-data-dir ${lores_train_data_dir} \
--lang $lang \
--lat-dir $lat_dir \
--num-leaves 7000 \
--tree-dir $tree_dir || exit 1;
if [ $stage -le 14 ]; then
echo "$0: creating neural net configs using the xconfig parser";
num_targets=$(tree-info $tree_dir/tree | grep num-pdfs | awk '{print $2}')
learning_rate_factor=$(echo "print (0.5/$xent_regularize)" | python)
cnn_opts="l2-regularize=0.01"
ivector_affine_opts="l2-regularize=0.0"
affine_opts="l2-regularize=0.008 dropout-proportion=0.0 dropout-per-dim=true dropout-per-dim-continuous=true"
tdnnf_first_opts="l2-regularize=0.008 dropout-proportion=0.0 bypass-scale=0.0"
tdnnf_opts="l2-regularize=0.008 dropout-proportion=0.0 bypass-scale=0.75"
linear_opts="l2-regularize=0.008 orthonormal-constraint=-1.0"
prefinal_opts="l2-regularize=0.008"
output_opts="l2-regularize=0.005"
mkdir -p $dir/configs
cat <<EOF > $dir/configs/network.xconfig
input dim=100 name=ivector
input dim=40 name=input
# MFCC to filterbank
idct-layer name=idct input=input dim=40 cepstral-lifter=22 affine-transform-file=$dir/configs/idct.mat
linear-component name=ivector-linear $ivector_affine_opts dim=200 input=ReplaceIndex(ivector, t, 0)
batchnorm-component name=ivector-batchnorm target-rms=0.025
batchnorm-component name=idct-batchnorm input=idct
combine-feature-maps-layer name=combine_inputs input=Append(idct-batchnorm, ivector-batchnorm) num-filters1=1 num-filters2=5 height=40
conv-relu-batchnorm-layer name=cnn1 $cnn_opts height-in=40 height-out=40 time-offsets=-1,0,1 height-offsets=-1,0,1 num-filters-out=64
conv-relu-batchnorm-layer name=cnn2 $cnn_opts height-in=40 height-out=40 time-offsets=-1,0,1 height-offsets=-1,0,1 num-filters-out=64
conv-relu-batchnorm-layer name=cnn3 $cnn_opts height-in=40 height-out=20 height-subsample-out=2 time-offsets=-1,0,1 height-offsets=-1,0,1 num-filters-out=128
conv-relu-batchnorm-layer name=cnn4 $cnn_opts height-in=20 height-out=20 time-offsets=-1,0,1 height-offsets=-1,0,1 num-filters-out=128
conv-relu-batchnorm-layer name=cnn5 $cnn_opts height-in=20 height-out=10 height-subsample-out=2 time-offsets=-1,0,1 height-offsets=-1,0,1 num-filters-out=256
conv-relu-batchnorm-layer name=cnn6 $cnn_opts height-in=10 height-out=10 time-offsets=-1,0,1 height-offsets=-1,0,1 num-filters-out=256
# the first TDNN-F layer has no bypass
tdnnf-layer name=tdnnf7 $tdnnf_first_opts dim=1536 bottleneck-dim=256 time-stride=0
tdnnf-layer name=tdnnf8 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
tdnnf-layer name=tdnnf9 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
tdnnf-layer name=tdnnf10 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
tdnnf-layer name=tdnnf11 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
tdnnf-layer name=tdnnf12 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
tdnnf-layer name=tdnnf13 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
tdnnf-layer name=tdnnf14 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
tdnnf-layer name=tdnnf15 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
tdnnf-layer name=tdnnf16 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
tdnnf-layer name=tdnnf17 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
tdnnf-layer name=tdnnf18 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3
linear-component name=prefinal-l dim=256 $linear_opts
prefinal-layer name=prefinal-chain input=prefinal-l $prefinal_opts big-dim=1536 small-dim=256
output-layer name=output include-log-softmax=false dim=$num_targets $output_opts
prefinal-layer name=prefinal-xent input=prefinal-l $prefinal_opts big-dim=1536 small-dim=256
output-layer name=output-xent dim=$num_targets learning-rate-factor=$learning_rate_factor $output_opts
EOF
steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/
fi
if [ $stage -le 15 ]; then
if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
utils/create_split_dir.pl \
/export/b{09,10,11,12}/$USER/kaldi-data/egs/swbd-$(date +'%m_%d_%H_%M')/s5c/$dir/egs/storage $dir/egs/storage
fi
steps/nnet3/chain/train.py --stage $train_stage \
--use-gpu "wait" \
--cmd "$decode_cmd" \
--feat.online-ivector-dir $train_ivector_dir \
--feat.cmvn-opts "--norm-means=false --norm-vars=false" \
--chain.xent-regularize $xent_regularize \
--chain.leaky-hmm-coefficient 0.1 \
--chain.l2-regularize 0.0 \
--chain.apply-deriv-weights false \
--chain.lm-opts="--num-extra-lm-states=2000" \
--egs.dir "$common_egs_dir" \
--egs.stage $get_egs_stage \
--egs.opts "--frames-overlap-per-eg 0 --constrained false" \
--egs.chunk-width $frames_per_eg \
--trainer.dropout-schedule $dropout_schedule \
--trainer.add-option="--optimization.memory-compression-level=2" \
--trainer.num-chunk-per-minibatch 64 \
--trainer.frames-per-iter 2500000 \
--trainer.num-epochs 4 \
--trainer.optimization.num-jobs-initial 3 \
--trainer.optimization.num-jobs-final 16 \
--trainer.optimization.initial-effective-lrate 0.00015 \
--trainer.optimization.final-effective-lrate 0.000015 \
--trainer.max-param-change 2.0 \
--cleanup.remove-egs $remove_egs \
--feat-dir $train_data_dir \
--tree-dir $tree_dir \
--lat-dir $lat_dir \
--dir $dir || exit 1;
fi
graph_dir=$dir/graph_tgsmall
if [ $stage -le 16 ]; then
# Note: it might appear that this $lang directory is mismatched, and it is as
# far as the 'topo' is concerned, but this script doesn't read the 'topo' from
# the lang directory.
utils/mkgraph.sh --self-loop-scale 1.0 --remove-oov data/lang_test_tgsmall $dir $graph_dir
# remove <UNK> from the graph, and convert back to const-FST.
fstrmsymbols --apply-to-output=true --remove-arcs=true "echo 3|" $graph_dir/HCLG.fst - | \
fstconvert --fst_type=const > $graph_dir/temp.fst
mv $graph_dir/temp.fst $graph_dir/HCLG.fst
fi
iter_opts=
if [ ! -z $decode_iter ]; then
iter_opts=" --iter $decode_iter "
fi
if [ $stage -le 17 ]; then
rm $dir/.error 2>/dev/null || true
for decode_set in test_clean test_other dev_clean dev_other; do
(
steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \
--nj $decode_nj --cmd "$decode_cmd" $iter_opts \
--online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_${decode_set}_hires \
$graph_dir data/${decode_set}_hires $dir/decode_${decode_set}${decode_iter:+_$decode_iter}_tgsmall || exit 1
steps/lmrescore.sh --cmd "$decode_cmd" --self-loop-scale 1.0 data/lang_test_{tgsmall,tgmed} \
data/${decode_set}_hires $dir/decode_${decode_set}${decode_iter:+_$decode_iter}_{tgsmall,tgmed} || exit 1
steps/lmrescore_const_arpa.sh \
--cmd "$decode_cmd" data/lang_test_{tgsmall,tglarge} \
data/${decode_set}_hires $dir/decode_${decode_set}${decode_iter:+_$decode_iter}_{tgsmall,tglarge} || exit 1
steps/lmrescore_const_arpa.sh \
--cmd "$decode_cmd" data/lang_test_{tgsmall,fglarge} \
data/${decode_set}_hires $dir/decode_${decode_set}${decode_iter:+_$decode_iter}_{tgsmall,fglarge} || exit 1
) || touch $dir/.error &
done
wait
if [ -f $dir/.error ]; then
echo "$0: something went wrong in decoding"
exit 1
fi
fi
if $test_online_decoding && [ $stage -le 18 ]; then
# note: if the features change (e.g. you add pitch features), you will have to
# change the options of the following command line.
steps/online/nnet3/prepare_online_decoding.sh \
--mfcc-config conf/mfcc_hires.conf \
$lang exp/nnet3${nnet3_affix}/extractor $dir ${dir}_online
rm $dir/.error 2>/dev/null || true
for data in test_clean test_other dev_clean dev_other; do
(
nspk=$(wc -l <data/${data}_hires/spk2utt)
# note: we just give it "data/${data}" as it only uses the wav.scp, the
# feature type does not matter.
steps/online/nnet3/decode.sh \
--acwt 1.0 --post-decode-acwt 10.0 \
--nj $nspk --cmd "$decode_cmd" \
$graph_dir data/${data} ${dir}_online/decode_${data}_tgsmall || exit 1
) || touch $dir/.error &
done
wait
if [ -f $dir/.error ]; then
echo "$0: something went wrong in decoding"
exit 1
fi
fi
exit 0;