Blame view
egs/librispeech/s5/local/chain/tuning/run_tdnn_1b.sh
9.74 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
#!/bin/bash set -e # run_tdnn_1b.sh's topo is similiar with run_tdnn_1a.sh but we used the xconfigs. Otherwise "frames_per_eg=150,140,100". #exp/chain_cleaned/tdnn_1b_sp: num-iters=871 nj=3..16 num-params=17.1M dim=40+100->5151 combine=-0.074->-0.074 xent:train/valid[579,870,final]=(-1.02,-0.986,-0.990/-0.985,-0.953,-0.957) logprob:train/valid[579,870,final]=(-0.066,-0.062,-0.063/-0.070,-0.069,-0.069) # by default, with cleanup: # local/chain/run_tdnn.sh # local/chain/compare_wer.sh exp/chain_cleaned/tdnn_1b_sp # System tdnn_1b_sp # WER on dev(fglarge) 3.87 # WER on dev(tglarge) 3.99 # WER on dev(tgmed) 4.96 # WER on dev(tgsmall) 5.42 # WER on dev_other(fglarge) 10.15 # WER on dev_other(tglarge) 10.77 # WER on dev_other(tgmed) 12.94 # WER on dev_other(tgsmall) 14.39 # WER on test(fglarge) 4.14 # WER on test(tglarge) 4.32 # WER on test(tgmed) 5.28 # WER on test(tgsmall) 5.88 # WER on test_other(fglarge) 10.80 # WER on test_other(tglarge) 11.13 # WER on test_other(tgmed) 13.37 # WER on test_other(tgsmall) 14.92 # Final train prob -0.0626 # Final valid prob -0.0687 # Final train prob (xent) -0.9905 # Final valid prob (xent) -0.9566 ## how you run this (note: this assumes that the run_tdnn.sh soft link points here; ## otherwise call it directly in its location). # without cleanup: # local/chain/run_tdnn.sh --train-set train_960 --gmm tri6b --nnet3-affix "" & # configs for 'chain' # this script is adapted from librispeech's 1c script. # First the options that are passed through to run_ivector_common.sh # (some of which are also used in this script directly). stage=0 decode_nj=50 train_set=train_960_cleaned gmm=tri6b_cleaned # the gmm for the target data nnet3_affix=_cleaned # cleanup affix for nnet3 and chain dirs, e.g. _cleaned # The rest are configs specific to this script. Most of the parameters # are just hardcoded at this level, in the commands below. affix=1b tree_affix= train_stage=-10 get_egs_stage=-10 decode_iter= # TDNN options # this script uses the new tdnn config generator so it needs a final 0 to reflect that the final layer input has no splicing # training options frames_per_eg=150,140,100 relu_dim=725 remove_egs=true common_egs_dir= xent_regularize=0.1 self_repair_scale=0.00001 # End configuration section. echo "$0 $@" # Print the command line for logging . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF fi # The iVector-extraction and feature-dumping parts are the same as the standard # nnet3 setup, and you can skip them by setting "--stage 11" if you have already # run those things. local/nnet3/run_ivector_common.sh --stage $stage \ --train-set $train_set \ --gmm $gmm \ --nnet3-affix "$nnet3_affix" || exit 1; gmm_dir=exp/$gmm ali_dir=exp/${gmm}_ali_${train_set}_sp tree_dir=exp/chain${nnet3_affix}/tree_sp${tree_affix:+_$tree_affix} lang=data/lang_chain lat_dir=exp/chain${nnet3_affix}/${gmm}_${train_set}_sp_lats dir=exp/chain${nnet3_affix}/tdnn${affix:+_$affix}_sp train_data_dir=data/${train_set}_sp_hires lores_train_data_dir=data/${train_set}_sp train_ivector_dir=exp/nnet3${nnet3_affix}/ivectors_${train_set}_sp_hires for f in $gmm_dir/final.mdl $train_data_dir/feats.scp $train_ivector_dir/ivector_online.scp \ $lores_train_data_dir/feats.scp $ali_dir/ali.1.gz; do [ ! -f $f ] && echo "$0: expected file $f to exist" && exit 1 done # Please take this as a reference on how to specify all the options of # local/chain/run_chain_common.sh local/chain/run_chain_common.sh --stage $stage \ --gmm-dir $gmm_dir \ --ali-dir $ali_dir \ --lores-train-data-dir ${lores_train_data_dir} \ --lang $lang \ --lat-dir $lat_dir \ --tree-dir $tree_dir || exit 1; if [ $stage -le 14 ]; then mkdir -p $dir echo "$0: creating neural net configs"; # create the config files for nnet initialization num_targets=$(tree-info $tree_dir/tree |grep num-pdfs|awk '{print $2}') learning_rate_factor=$(echo "print (0.5/$xent_regularize)" | python) mkdir -p $dir/configs cat <<EOF > $dir/configs/network.xconfig input dim=100 name=ivector input dim=40 name=input # please note that it is important to have input layer with the name=input # as the layer immediately preceding the fixed-affine-layer to enable # the use of short notation for the descriptor fixed-affine-layer name=lda input=Append(-1,0,1,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat # the first splicing is moved before the lda layer, so no splicing here relu-batchnorm-layer name=tdnn1 dim=$relu_dim relu-batchnorm-layer name=tdnn2 dim=$relu_dim input=Append(-1,0,1,2) relu-batchnorm-layer name=tdnn3 dim=$relu_dim input=Append(-3,0,3) relu-batchnorm-layer name=tdnn4 dim=$relu_dim input=Append(-3,0,3) relu-batchnorm-layer name=tdnn5 dim=$relu_dim input=Append(-3,0,3) relu-batchnorm-layer name=tdnn6 dim=$relu_dim input=Append(-6,-3,0) ## adding the layers for chain branch relu-batchnorm-layer name=prefinal-chain dim=$relu_dim target-rms=0.5 output-layer name=output include-log-softmax=false dim=$num_targets max-change=1.5 # adding the layers for xent branch # This block prints the configs for a separate output that will be # trained with a cross-entropy objective in the 'chain' models... this # has the effect of regularizing the hidden parts of the model. we use # 0.5 / args.xent_regularize as the learning rate factor- the factor of # 0.5 / args.xent_regularize is suitable as it means the xent # final-layer learns at a rate independent of the regularization # constant; and the 0.5 was tuned so as to make the relative progress # similar in the xent and regular final layers. relu-batchnorm-layer name=prefinal-xent input=tdnn6 dim=$relu_dim target-rms=0.5 output-layer name=output-xent dim=$num_targets learning-rate-factor=$learning_rate_factor max-change=1.5 EOF steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/ fi if [ $stage -le 15 ]; then if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then utils/create_split_dir.pl \ /export/b0{5,6,7,8}/$USER/kaldi-data/egs/librispeech-$(date +'%m_%d_%H_%M')/s5c/$dir/egs/storage $dir/egs/storage fi steps/nnet3/chain/train.py --stage $train_stage \ --cmd "$decode_cmd" \ --feat.online-ivector-dir $train_ivector_dir \ --feat.cmvn-opts "--norm-means=false --norm-vars=false" \ --chain.xent-regularize $xent_regularize \ --chain.leaky-hmm-coefficient 0.1 \ --chain.l2-regularize 0.00005 \ --chain.apply-deriv-weights false \ --chain.lm-opts="--num-extra-lm-states=2000" \ --egs.stage $get_egs_stage \ --egs.opts "--frames-overlap-per-eg 0" \ --egs.chunk-width $frames_per_eg \ --egs.dir "$common_egs_dir" \ --trainer.num-chunk-per-minibatch 128 \ --trainer.frames-per-iter 1500000 \ --trainer.num-epochs 4 \ --trainer.optimization.num-jobs-initial 3 \ --trainer.optimization.num-jobs-final 16 \ --trainer.optimization.initial-effective-lrate 0.001 \ --trainer.optimization.final-effective-lrate 0.0001 \ --trainer.max-param-change 2 \ --cleanup.remove-egs $remove_egs \ --feat-dir $train_data_dir \ --tree-dir $tree_dir \ --lat-dir $lat_dir \ --dir $dir || exit 1; fi graph_dir=$dir/graph_tgsmall if [ $stage -le 16 ]; then # Note: it might appear that this $lang directory is mismatched, and it is as # far as the 'topo' is concerned, but this script doesn't read the 'topo' from # the lang directory. utils/mkgraph.sh --self-loop-scale 1.0 --remove-oov data/lang_test_tgsmall $dir $graph_dir # remove <UNK> from the graph, and convert back to const-FST. fstrmsymbols --apply-to-output=true --remove-arcs=true "echo 3|" $graph_dir/HCLG.fst - | \ fstconvert --fst_type=const > $graph_dir/temp.fst mv $graph_dir/temp.fst $graph_dir/HCLG.fst fi if [ $stage -le 17 ]; then iter_opts= if [ ! -z $decode_iter ]; then iter_opts=" --iter $decode_iter " fi rm $dir/.error 2>/dev/null || true for decode_set in test_clean test_other dev_clean dev_other; do ( steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \ --nj $decode_nj --cmd "$decode_cmd" $iter_opts \ --online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_${decode_set}_hires \ $graph_dir data/${decode_set}_hires $dir/decode_${decode_set}${decode_iter:+_$decode_iter}_tgsmall || exit 1 steps/lmrescore.sh --cmd "$decode_cmd" --self-loop-scale 1.0 data/lang_test_{tgsmall,tgmed} \ data/${decode_set}_hires $dir/decode_${decode_set}${decode_iter:+_$decode_iter}_{tgsmall,tgmed} || exit 1 steps/lmrescore_const_arpa.sh \ --cmd "$decode_cmd" data/lang_test_{tgsmall,tglarge} \ data/${decode_set}_hires $dir/decode_${decode_set}${decode_iter:+_$decode_iter}_{tgsmall,tglarge} || exit 1 steps/lmrescore_const_arpa.sh \ --cmd "$decode_cmd" data/lang_test_{tgsmall,fglarge} \ data/${decode_set}_hires $dir/decode_${decode_set}${decode_iter:+_$decode_iter}_{tgsmall,fglarge} || exit 1 ) || touch $dir/.error & done wait [ -f $dir/.error ] && echo "$0: there was a problem while decoding" && exit 1 fi exit 0; |