run_tdnn_1b.sh
9.74 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
#!/bin/bash
set -e
# run_tdnn_1b.sh's topo is similiar with run_tdnn_1a.sh but we used the xconfigs. Otherwise "frames_per_eg=150,140,100".
#exp/chain_cleaned/tdnn_1b_sp: num-iters=871 nj=3..16 num-params=17.1M dim=40+100->5151 combine=-0.074->-0.074 xent:train/valid[579,870,final]=(-1.02,-0.986,-0.990/-0.985,-0.953,-0.957) logprob:train/valid[579,870,final]=(-0.066,-0.062,-0.063/-0.070,-0.069,-0.069)
# by default, with cleanup:
# local/chain/run_tdnn.sh
# local/chain/compare_wer.sh exp/chain_cleaned/tdnn_1b_sp
# System tdnn_1b_sp
# WER on dev(fglarge) 3.87
# WER on dev(tglarge) 3.99
# WER on dev(tgmed) 4.96
# WER on dev(tgsmall) 5.42
# WER on dev_other(fglarge) 10.15
# WER on dev_other(tglarge) 10.77
# WER on dev_other(tgmed) 12.94
# WER on dev_other(tgsmall) 14.39
# WER on test(fglarge) 4.14
# WER on test(tglarge) 4.32
# WER on test(tgmed) 5.28
# WER on test(tgsmall) 5.88
# WER on test_other(fglarge) 10.80
# WER on test_other(tglarge) 11.13
# WER on test_other(tgmed) 13.37
# WER on test_other(tgsmall) 14.92
# Final train prob -0.0626
# Final valid prob -0.0687
# Final train prob (xent) -0.9905
# Final valid prob (xent) -0.9566
## how you run this (note: this assumes that the run_tdnn.sh soft link points here;
## otherwise call it directly in its location).
# without cleanup:
# local/chain/run_tdnn.sh --train-set train_960 --gmm tri6b --nnet3-affix "" &
# configs for 'chain'
# this script is adapted from librispeech's 1c script.
# First the options that are passed through to run_ivector_common.sh
# (some of which are also used in this script directly).
stage=0
decode_nj=50
train_set=train_960_cleaned
gmm=tri6b_cleaned # the gmm for the target data
nnet3_affix=_cleaned # cleanup affix for nnet3 and chain dirs, e.g. _cleaned
# The rest are configs specific to this script. Most of the parameters
# are just hardcoded at this level, in the commands below.
affix=1b
tree_affix=
train_stage=-10
get_egs_stage=-10
decode_iter=
# TDNN options
# this script uses the new tdnn config generator so it needs a final 0 to reflect that the final layer input has no splicing
# training options
frames_per_eg=150,140,100
relu_dim=725
remove_egs=true
common_egs_dir=
xent_regularize=0.1
self_repair_scale=0.00001
# End configuration section.
echo "$0 $@" # Print the command line for logging
. ./cmd.sh
. ./path.sh
. ./utils/parse_options.sh
if ! cuda-compiled; then
cat <<EOF && exit 1
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
If you want to use GPUs (and have them), go to src/, and configure and make on a machine
where "nvcc" is installed.
EOF
fi
# The iVector-extraction and feature-dumping parts are the same as the standard
# nnet3 setup, and you can skip them by setting "--stage 11" if you have already
# run those things.
local/nnet3/run_ivector_common.sh --stage $stage \
--train-set $train_set \
--gmm $gmm \
--nnet3-affix "$nnet3_affix" || exit 1;
gmm_dir=exp/$gmm
ali_dir=exp/${gmm}_ali_${train_set}_sp
tree_dir=exp/chain${nnet3_affix}/tree_sp${tree_affix:+_$tree_affix}
lang=data/lang_chain
lat_dir=exp/chain${nnet3_affix}/${gmm}_${train_set}_sp_lats
dir=exp/chain${nnet3_affix}/tdnn${affix:+_$affix}_sp
train_data_dir=data/${train_set}_sp_hires
lores_train_data_dir=data/${train_set}_sp
train_ivector_dir=exp/nnet3${nnet3_affix}/ivectors_${train_set}_sp_hires
for f in $gmm_dir/final.mdl $train_data_dir/feats.scp $train_ivector_dir/ivector_online.scp \
$lores_train_data_dir/feats.scp $ali_dir/ali.1.gz; do
[ ! -f $f ] && echo "$0: expected file $f to exist" && exit 1
done
# Please take this as a reference on how to specify all the options of
# local/chain/run_chain_common.sh
local/chain/run_chain_common.sh --stage $stage \
--gmm-dir $gmm_dir \
--ali-dir $ali_dir \
--lores-train-data-dir ${lores_train_data_dir} \
--lang $lang \
--lat-dir $lat_dir \
--tree-dir $tree_dir || exit 1;
if [ $stage -le 14 ]; then
mkdir -p $dir
echo "$0: creating neural net configs";
# create the config files for nnet initialization
num_targets=$(tree-info $tree_dir/tree |grep num-pdfs|awk '{print $2}')
learning_rate_factor=$(echo "print (0.5/$xent_regularize)" | python)
mkdir -p $dir/configs
cat <<EOF > $dir/configs/network.xconfig
input dim=100 name=ivector
input dim=40 name=input
# please note that it is important to have input layer with the name=input
# as the layer immediately preceding the fixed-affine-layer to enable
# the use of short notation for the descriptor
fixed-affine-layer name=lda input=Append(-1,0,1,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat
# the first splicing is moved before the lda layer, so no splicing here
relu-batchnorm-layer name=tdnn1 dim=$relu_dim
relu-batchnorm-layer name=tdnn2 dim=$relu_dim input=Append(-1,0,1,2)
relu-batchnorm-layer name=tdnn3 dim=$relu_dim input=Append(-3,0,3)
relu-batchnorm-layer name=tdnn4 dim=$relu_dim input=Append(-3,0,3)
relu-batchnorm-layer name=tdnn5 dim=$relu_dim input=Append(-3,0,3)
relu-batchnorm-layer name=tdnn6 dim=$relu_dim input=Append(-6,-3,0)
## adding the layers for chain branch
relu-batchnorm-layer name=prefinal-chain dim=$relu_dim target-rms=0.5
output-layer name=output include-log-softmax=false dim=$num_targets max-change=1.5
# adding the layers for xent branch
# This block prints the configs for a separate output that will be
# trained with a cross-entropy objective in the 'chain' models... this
# has the effect of regularizing the hidden parts of the model. we use
# 0.5 / args.xent_regularize as the learning rate factor- the factor of
# 0.5 / args.xent_regularize is suitable as it means the xent
# final-layer learns at a rate independent of the regularization
# constant; and the 0.5 was tuned so as to make the relative progress
# similar in the xent and regular final layers.
relu-batchnorm-layer name=prefinal-xent input=tdnn6 dim=$relu_dim target-rms=0.5
output-layer name=output-xent dim=$num_targets learning-rate-factor=$learning_rate_factor max-change=1.5
EOF
steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/
fi
if [ $stage -le 15 ]; then
if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
utils/create_split_dir.pl \
/export/b0{5,6,7,8}/$USER/kaldi-data/egs/librispeech-$(date +'%m_%d_%H_%M')/s5c/$dir/egs/storage $dir/egs/storage
fi
steps/nnet3/chain/train.py --stage $train_stage \
--cmd "$decode_cmd" \
--feat.online-ivector-dir $train_ivector_dir \
--feat.cmvn-opts "--norm-means=false --norm-vars=false" \
--chain.xent-regularize $xent_regularize \
--chain.leaky-hmm-coefficient 0.1 \
--chain.l2-regularize 0.00005 \
--chain.apply-deriv-weights false \
--chain.lm-opts="--num-extra-lm-states=2000" \
--egs.stage $get_egs_stage \
--egs.opts "--frames-overlap-per-eg 0" \
--egs.chunk-width $frames_per_eg \
--egs.dir "$common_egs_dir" \
--trainer.num-chunk-per-minibatch 128 \
--trainer.frames-per-iter 1500000 \
--trainer.num-epochs 4 \
--trainer.optimization.num-jobs-initial 3 \
--trainer.optimization.num-jobs-final 16 \
--trainer.optimization.initial-effective-lrate 0.001 \
--trainer.optimization.final-effective-lrate 0.0001 \
--trainer.max-param-change 2 \
--cleanup.remove-egs $remove_egs \
--feat-dir $train_data_dir \
--tree-dir $tree_dir \
--lat-dir $lat_dir \
--dir $dir || exit 1;
fi
graph_dir=$dir/graph_tgsmall
if [ $stage -le 16 ]; then
# Note: it might appear that this $lang directory is mismatched, and it is as
# far as the 'topo' is concerned, but this script doesn't read the 'topo' from
# the lang directory.
utils/mkgraph.sh --self-loop-scale 1.0 --remove-oov data/lang_test_tgsmall $dir $graph_dir
# remove <UNK> from the graph, and convert back to const-FST.
fstrmsymbols --apply-to-output=true --remove-arcs=true "echo 3|" $graph_dir/HCLG.fst - | \
fstconvert --fst_type=const > $graph_dir/temp.fst
mv $graph_dir/temp.fst $graph_dir/HCLG.fst
fi
if [ $stage -le 17 ]; then
iter_opts=
if [ ! -z $decode_iter ]; then
iter_opts=" --iter $decode_iter "
fi
rm $dir/.error 2>/dev/null || true
for decode_set in test_clean test_other dev_clean dev_other; do
(
steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \
--nj $decode_nj --cmd "$decode_cmd" $iter_opts \
--online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_${decode_set}_hires \
$graph_dir data/${decode_set}_hires $dir/decode_${decode_set}${decode_iter:+_$decode_iter}_tgsmall || exit 1
steps/lmrescore.sh --cmd "$decode_cmd" --self-loop-scale 1.0 data/lang_test_{tgsmall,tgmed} \
data/${decode_set}_hires $dir/decode_${decode_set}${decode_iter:+_$decode_iter}_{tgsmall,tgmed} || exit 1
steps/lmrescore_const_arpa.sh \
--cmd "$decode_cmd" data/lang_test_{tgsmall,tglarge} \
data/${decode_set}_hires $dir/decode_${decode_set}${decode_iter:+_$decode_iter}_{tgsmall,tglarge} || exit 1
steps/lmrescore_const_arpa.sh \
--cmd "$decode_cmd" data/lang_test_{tgsmall,fglarge} \
data/${decode_set}_hires $dir/decode_${decode_set}${decode_iter:+_$decode_iter}_{tgsmall,fglarge} || exit 1
) || touch $dir/.error &
done
wait
[ -f $dir/.error ] && echo "$0: there was a problem while decoding" && exit 1
fi
exit 0;