Blame view

egs/lre07/v1/run.sh 6.73 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
  #!/bin/bash
  # Copyright  2014-2015  David Snyder
  #                       Daniel Povey
  # Apache 2.0.
  #
  # This script runs the NIST 2007 General Language Recognition Closed-Set
  # evaluation.
  
  . ./cmd.sh
  . ./path.sh
  set -e
  
  mfccdir=`pwd`/mfcc
  vaddir=`pwd`/mfcc
  languages=local/general_lr_closed_set_langs.txt
  data_root=/export/corpora/LDC
  
  # Training data sources
  local/make_sre_2008_train.pl $data_root/LDC2011S05 data
  local/make_callfriend.pl $data_root/LDC96S60 vietnamese data
  local/make_callfriend.pl $data_root/LDC96S59 tamil data
  local/make_callfriend.pl $data_root/LDC96S53 japanese data
  local/make_callfriend.pl $data_root/LDC96S52 hindi data
  local/make_callfriend.pl $data_root/LDC96S51 german data
  local/make_callfriend.pl $data_root/LDC96S50 farsi data
  local/make_callfriend.pl $data_root/LDC96S48 french data
  local/make_callfriend.pl $data_root/LDC96S49 arabic.standard data
  local/make_callfriend.pl $data_root/LDC96S54 korean data
  local/make_callfriend.pl $data_root/LDC96S55 chinese.mandarin.mainland data
  local/make_callfriend.pl $data_root/LDC96S56 chinese.mandarin.taiwan data
  local/make_callfriend.pl $data_root/LDC96S57 spanish.caribbean data
  local/make_callfriend.pl $data_root/LDC96S58 spanish.noncaribbean data
  local/make_lre03.pl $data_root/LDC/LDC2006S31 data
  local/make_lre05.pl $data_root/LDC/LDC2008S05 data
  local/make_lre07_train.pl $data_root/LDC2009S05 data
  local/make_lre09.pl /export/corpora5/NIST/LRE/LRE2009/eval data
  
  # Make the evaluation data set. We're concentrating on the General Language
  # Recognition Closed-Set evaluation, so we remove the dialects and filter
  # out the unknown languages used in the open-set evaluation.
  local/make_lre07.pl $data_root/LDC2009S04 data/lre07_all
  
  cp -r data/lre07_all data/lre07
  utils/filter_scp.pl -f 2 $languages <(lid/remove_dialect.pl data/lre07_all/utt2lang) \
    > data/lre07/utt2lang
  utils/fix_data_dir.sh data/lre07
  
  src_list="data/sre08_train_10sec_female \
      data/sre08_train_10sec_male data/sre08_train_3conv_female \
      data/sre08_train_3conv_male data/sre08_train_8conv_female \
      data/sre08_train_8conv_male data/sre08_train_short2_male \
      data/sre08_train_short2_female data/ldc96* data/lid05d1 \
      data/lid05e1 data/lid96d1 data/lid96e1 data/lre03 \
      data/ldc2009* data/lre09"
  
  # Remove any spk2gender files that we have: since not all data
  # sources have this info, it will cause problems with combine_data.sh
  for d in $src_list; do rm -f $d/spk2gender 2>/dev/null; done
  
  utils/combine_data.sh data/train_unsplit $src_list
  
  # original utt2lang will remain in data/train_unsplit/.backup/utt2lang.
  utils/apply_map.pl -f 2 --permissive local/lang_map.txt \
    < data/train_unsplit/utt2lang 2>/dev/null > foo
  cp foo data/train_unsplit/utt2lang
  rm foo
  
  local/split_long_utts.sh --max-utt-len 120 data/train_unsplit data/train
  
  echo "**Language count in i-Vector extractor training (after splitting long utterances):**"
  awk '{print $2}' data/train/utt2lang | sort | uniq -c | sort -nr
  
  use_vtln=true
  if $use_vtln; then
    for t in train lre07; do
      cp -r data/${t} data/${t}_novtln
      rm -r data/${t}_novtln/{split,.backup,spk2warp} 2>/dev/null || true
      steps/make_mfcc.sh --mfcc-config conf/mfcc_vtln.conf --nj 100 --cmd "$train_cmd" \
         data/${t}_novtln exp/make_mfcc $mfccdir
      lid/compute_vad_decision.sh data/${t}_novtln exp/make_mfcc $mfccdir
    done
  
    # Vtln-related things:
    # We'll use a subset of utterances to train the GMM we'll use for VTLN
    # warping.
    utils/subset_data_dir.sh data/train_novtln 5000 data/train_5k_novtln
  
    # Note, we're using the speaker-id version of the train_diag_ubm.sh script, which
    # uses double-delta instead of SDC features to train a 256-Gaussian UBM.
    sid/train_diag_ubm.sh --nj 30 --cmd "$train_cmd" data/train_5k_novtln 256 \
      exp/diag_ubm_vtln
    lid/train_lvtln_model.sh --mfcc-config conf/mfcc_vtln.conf --nj 30 --cmd "$train_cmd" \
       data/train_5k_novtln exp/diag_ubm_vtln exp/vtln
  
    for t in lre07 train; do
      lid/get_vtln_warps.sh --nj 50 --cmd "$train_cmd" \
         data/${t}_novtln exp/vtln exp/${t}_warps
      cp exp/${t}_warps/utt2warp data/$t/
    done
  fi
  
  
  utils/fix_data_dir.sh data/train
  utils/filter_scp.pl data/train/utt2warp data/train/utt2spk > data/train/utt2spk_tmp
  cp data/train/utt2spk_tmp data/train/utt2spk
  utils/fix_data_dir.sh data/train
  
  
  steps/make_mfcc.sh --mfcc-config conf/mfcc.conf --nj 100 --cmd "$train_cmd" \
    data/train exp/make_mfcc $mfccdir
  steps/make_mfcc.sh --mfcc-config conf/mfcc.conf --nj 40 --cmd "$train_cmd" \
    data/lre07 exp/make_mfcc $mfccdir
  
  lid/compute_vad_decision.sh --nj 4 --cmd "$train_cmd" data/train \
    exp/make_vad $vaddir
  lid/compute_vad_decision.sh --nj 4 --cmd "$train_cmd" data/lre07 \
    exp/make_vad $vaddir
  
  
  utils/subset_data_dir.sh data/train 5000 data/train_5k
  utils/subset_data_dir.sh data/train 10000 data/train_10k
  
  
  lid/train_diag_ubm.sh --nj 30 --cmd "$train_cmd --mem 20G" \
    data/train_5k 2048 exp/diag_ubm_2048
  lid/train_full_ubm.sh --nj 30 --cmd "$train_cmd --mem 20G" \
    data/train_10k exp/diag_ubm_2048 exp/full_ubm_2048_10k
  
  lid/train_full_ubm.sh --nj 30 --cmd "$train_cmd --mem 35G" \
    data/train exp/full_ubm_2048_10k exp/full_ubm_2048
  
  # Alternatively, a diagonal UBM can replace the full UBM used above.
  # The preceding calls to train_diag_ubm.sh and train_full_ubm.sh
  # can be commented out and replaced with the following lines.
  #
  # This results in a slight degradation but could improve error rate when
  # there is less training data than used in this example.
  #
  #lid/train_diag_ubm.sh --nj 30 --cmd "$train_cmd" data/train 2048 \
  #  exp/diag_ubm_2048
  #
  #gmm-global-to-fgmm exp/diag_ubm_2048/final.dubm \
  #  exp/full_ubm_2048/final.ubm
  
  lid/train_ivector_extractor.sh --cmd "$train_cmd --mem 35G" \
    --use-weights true \
    --num-iters 5 exp/full_ubm_2048/final.ubm data/train \
    exp/extractor_2048
  
  # Filter out the languages we don't need for the closed-set eval
  cp -r data/train data/train_lr
  utils/filter_scp.pl -f 2 $languages <(lid/remove_dialect.pl data/train/utt2lang) \
    > data/train_lr/utt2lang
  utils/fix_data_dir.sh data/train_lr
  
  echo "**Language count for logistic regression training (after splitting long utterances):**"
  awk '{print $2}' data/train_lr/utt2lang | sort | uniq -c | sort -nr
  
  lid/extract_ivectors.sh --cmd "$train_cmd --mem 3G" --nj 50 \
     exp/extractor_2048 data/train_lr exp/ivectors_train
  
  lid/extract_ivectors.sh --cmd "$train_cmd --mem 3G" --nj 50 \
     exp/extractor_2048 data/lre07 exp/ivectors_lre07
  
  lid/run_logistic_regression.sh --prior-scale 0.70 \
    --conf conf/logistic-regression.conf
  # Training error-rate
  # ER (%): 3.95
  
  # General LR 2007 closed-set eval
  local/lre07_eval/lre07_eval.sh exp/ivectors_lre07 \
    local/general_lr_closed_set_langs.txt
  # Duration (sec):    avg      3     10     30
  #         ER (%):  23.11  42.84  19.33   7.18
  #      C_avg (%):  14.17  26.04  11.93   4.52