run.sh
6.73 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
#!/bin/bash
# Copyright 2014-2015 David Snyder
# Daniel Povey
# Apache 2.0.
#
# This script runs the NIST 2007 General Language Recognition Closed-Set
# evaluation.
. ./cmd.sh
. ./path.sh
set -e
mfccdir=`pwd`/mfcc
vaddir=`pwd`/mfcc
languages=local/general_lr_closed_set_langs.txt
data_root=/export/corpora/LDC
# Training data sources
local/make_sre_2008_train.pl $data_root/LDC2011S05 data
local/make_callfriend.pl $data_root/LDC96S60 vietnamese data
local/make_callfriend.pl $data_root/LDC96S59 tamil data
local/make_callfriend.pl $data_root/LDC96S53 japanese data
local/make_callfriend.pl $data_root/LDC96S52 hindi data
local/make_callfriend.pl $data_root/LDC96S51 german data
local/make_callfriend.pl $data_root/LDC96S50 farsi data
local/make_callfriend.pl $data_root/LDC96S48 french data
local/make_callfriend.pl $data_root/LDC96S49 arabic.standard data
local/make_callfriend.pl $data_root/LDC96S54 korean data
local/make_callfriend.pl $data_root/LDC96S55 chinese.mandarin.mainland data
local/make_callfriend.pl $data_root/LDC96S56 chinese.mandarin.taiwan data
local/make_callfriend.pl $data_root/LDC96S57 spanish.caribbean data
local/make_callfriend.pl $data_root/LDC96S58 spanish.noncaribbean data
local/make_lre03.pl $data_root/LDC/LDC2006S31 data
local/make_lre05.pl $data_root/LDC/LDC2008S05 data
local/make_lre07_train.pl $data_root/LDC2009S05 data
local/make_lre09.pl /export/corpora5/NIST/LRE/LRE2009/eval data
# Make the evaluation data set. We're concentrating on the General Language
# Recognition Closed-Set evaluation, so we remove the dialects and filter
# out the unknown languages used in the open-set evaluation.
local/make_lre07.pl $data_root/LDC2009S04 data/lre07_all
cp -r data/lre07_all data/lre07
utils/filter_scp.pl -f 2 $languages <(lid/remove_dialect.pl data/lre07_all/utt2lang) \
> data/lre07/utt2lang
utils/fix_data_dir.sh data/lre07
src_list="data/sre08_train_10sec_female \
data/sre08_train_10sec_male data/sre08_train_3conv_female \
data/sre08_train_3conv_male data/sre08_train_8conv_female \
data/sre08_train_8conv_male data/sre08_train_short2_male \
data/sre08_train_short2_female data/ldc96* data/lid05d1 \
data/lid05e1 data/lid96d1 data/lid96e1 data/lre03 \
data/ldc2009* data/lre09"
# Remove any spk2gender files that we have: since not all data
# sources have this info, it will cause problems with combine_data.sh
for d in $src_list; do rm -f $d/spk2gender 2>/dev/null; done
utils/combine_data.sh data/train_unsplit $src_list
# original utt2lang will remain in data/train_unsplit/.backup/utt2lang.
utils/apply_map.pl -f 2 --permissive local/lang_map.txt \
< data/train_unsplit/utt2lang 2>/dev/null > foo
cp foo data/train_unsplit/utt2lang
rm foo
local/split_long_utts.sh --max-utt-len 120 data/train_unsplit data/train
echo "**Language count in i-Vector extractor training (after splitting long utterances):**"
awk '{print $2}' data/train/utt2lang | sort | uniq -c | sort -nr
use_vtln=true
if $use_vtln; then
for t in train lre07; do
cp -r data/${t} data/${t}_novtln
rm -r data/${t}_novtln/{split,.backup,spk2warp} 2>/dev/null || true
steps/make_mfcc.sh --mfcc-config conf/mfcc_vtln.conf --nj 100 --cmd "$train_cmd" \
data/${t}_novtln exp/make_mfcc $mfccdir
lid/compute_vad_decision.sh data/${t}_novtln exp/make_mfcc $mfccdir
done
# Vtln-related things:
# We'll use a subset of utterances to train the GMM we'll use for VTLN
# warping.
utils/subset_data_dir.sh data/train_novtln 5000 data/train_5k_novtln
# Note, we're using the speaker-id version of the train_diag_ubm.sh script, which
# uses double-delta instead of SDC features to train a 256-Gaussian UBM.
sid/train_diag_ubm.sh --nj 30 --cmd "$train_cmd" data/train_5k_novtln 256 \
exp/diag_ubm_vtln
lid/train_lvtln_model.sh --mfcc-config conf/mfcc_vtln.conf --nj 30 --cmd "$train_cmd" \
data/train_5k_novtln exp/diag_ubm_vtln exp/vtln
for t in lre07 train; do
lid/get_vtln_warps.sh --nj 50 --cmd "$train_cmd" \
data/${t}_novtln exp/vtln exp/${t}_warps
cp exp/${t}_warps/utt2warp data/$t/
done
fi
utils/fix_data_dir.sh data/train
utils/filter_scp.pl data/train/utt2warp data/train/utt2spk > data/train/utt2spk_tmp
cp data/train/utt2spk_tmp data/train/utt2spk
utils/fix_data_dir.sh data/train
steps/make_mfcc.sh --mfcc-config conf/mfcc.conf --nj 100 --cmd "$train_cmd" \
data/train exp/make_mfcc $mfccdir
steps/make_mfcc.sh --mfcc-config conf/mfcc.conf --nj 40 --cmd "$train_cmd" \
data/lre07 exp/make_mfcc $mfccdir
lid/compute_vad_decision.sh --nj 4 --cmd "$train_cmd" data/train \
exp/make_vad $vaddir
lid/compute_vad_decision.sh --nj 4 --cmd "$train_cmd" data/lre07 \
exp/make_vad $vaddir
utils/subset_data_dir.sh data/train 5000 data/train_5k
utils/subset_data_dir.sh data/train 10000 data/train_10k
lid/train_diag_ubm.sh --nj 30 --cmd "$train_cmd --mem 20G" \
data/train_5k 2048 exp/diag_ubm_2048
lid/train_full_ubm.sh --nj 30 --cmd "$train_cmd --mem 20G" \
data/train_10k exp/diag_ubm_2048 exp/full_ubm_2048_10k
lid/train_full_ubm.sh --nj 30 --cmd "$train_cmd --mem 35G" \
data/train exp/full_ubm_2048_10k exp/full_ubm_2048
# Alternatively, a diagonal UBM can replace the full UBM used above.
# The preceding calls to train_diag_ubm.sh and train_full_ubm.sh
# can be commented out and replaced with the following lines.
#
# This results in a slight degradation but could improve error rate when
# there is less training data than used in this example.
#
#lid/train_diag_ubm.sh --nj 30 --cmd "$train_cmd" data/train 2048 \
# exp/diag_ubm_2048
#
#gmm-global-to-fgmm exp/diag_ubm_2048/final.dubm \
# exp/full_ubm_2048/final.ubm
lid/train_ivector_extractor.sh --cmd "$train_cmd --mem 35G" \
--use-weights true \
--num-iters 5 exp/full_ubm_2048/final.ubm data/train \
exp/extractor_2048
# Filter out the languages we don't need for the closed-set eval
cp -r data/train data/train_lr
utils/filter_scp.pl -f 2 $languages <(lid/remove_dialect.pl data/train/utt2lang) \
> data/train_lr/utt2lang
utils/fix_data_dir.sh data/train_lr
echo "**Language count for logistic regression training (after splitting long utterances):**"
awk '{print $2}' data/train_lr/utt2lang | sort | uniq -c | sort -nr
lid/extract_ivectors.sh --cmd "$train_cmd --mem 3G" --nj 50 \
exp/extractor_2048 data/train_lr exp/ivectors_train
lid/extract_ivectors.sh --cmd "$train_cmd --mem 3G" --nj 50 \
exp/extractor_2048 data/lre07 exp/ivectors_lre07
lid/run_logistic_regression.sh --prior-scale 0.70 \
--conf conf/logistic-regression.conf
# Training error-rate
# ER (%): 3.95
# General LR 2007 closed-set eval
local/lre07_eval/lre07_eval.sh exp/ivectors_lre07 \
local/general_lr_closed_set_langs.txt
# Duration (sec): avg 3 10 30
# ER (%): 23.11 42.84 19.33 7.18
# C_avg (%): 14.17 26.04 11.93 4.52