Blame view
egs/reverb/s5/local/Generate_mcTrainData_cut.m
7.02 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
function Generate_mcTrainData_cut(WSJ_dir_name, save_dir) % % Input variables: % WSJ_dir_name: string name of WAV file directory converted from original wsjcam0 SPHERE files % (*Directory structure for wsjcam0 corpus to be kept as it is after obtaining it from LDC. % Otherwise this script does not work.) % % This function generates multi-condition traiing data % based on the following items: % 1. wsjcam0 corpus (WAV files) % 2. room impulse responses (ones under ./RIR/) % 3. noise (ones under ./NOISE/). % Generated data has the same directory structure as original wsjcam0 corpus. % if nargin<2 error('Usage: Generate_mcTrainData(WSJCAM0_data_path, save_dir) *Note that the input variable WSJCAM0_data_path should indicate the directory name of your clean WSJCAM0 corpus. '); end if exist([WSJ_dir_name,'/data/'])==0 error(['Could not find wsjcam0 corpus : Please confirm if ',WSJ_dir_name,' is a correct path to your clean WSJCAM0 corpus']); end if ~exist('save_dir', 'var') error('You have to set the save_dir variable in the code before running this script!') end display(['Name of directory for original wsjcam0: ',WSJ_dir_name]) display(['Name of directory to save generated multi-condition training data: ',save_dir]) % Parameters related to acoustic conditions SNRdB=20; % List of WSJ speech data flist1='etc/audio_si_tr.lst'; % % List of RIRs % num_RIRvar=24; RIR_sim1='./RIR/RIR_SmallRoom1_near_AnglA.wav'; RIR_sim2='./RIR/RIR_SmallRoom1_near_AnglB.wav'; RIR_sim3='./RIR/RIR_SmallRoom1_far_AnglA.wav'; RIR_sim4='./RIR/RIR_SmallRoom1_far_AnglB.wav'; RIR_sim5='./RIR/RIR_MediumRoom1_near_AnglA.wav'; RIR_sim6='./RIR/RIR_MediumRoom1_near_AnglB.wav'; RIR_sim7='./RIR/RIR_MediumRoom1_far_AnglA.wav'; RIR_sim8='./RIR/RIR_MediumRoom1_far_AnglB.wav'; RIR_sim9='./RIR/RIR_LargeRoom1_near_AnglA.wav'; RIR_sim10='./RIR/RIR_LargeRoom1_near_AnglB.wav'; RIR_sim11='./RIR/RIR_LargeRoom1_far_AnglA.wav'; RIR_sim12='./RIR/RIR_LargeRoom1_far_AnglB.wav'; RIR_sim13='./RIR/RIR_SmallRoom2_near_AnglA.wav'; RIR_sim14='./RIR/RIR_SmallRoom2_near_AnglB.wav'; RIR_sim15='./RIR/RIR_SmallRoom2_far_AnglA.wav'; RIR_sim16='./RIR/RIR_SmallRoom2_far_AnglB.wav'; RIR_sim17='./RIR/RIR_MediumRoom2_near_AnglA.wav'; RIR_sim18='./RIR/RIR_MediumRoom2_near_AnglB.wav'; RIR_sim19='./RIR/RIR_MediumRoom2_far_AnglA.wav'; RIR_sim20='./RIR/RIR_MediumRoom2_far_AnglB.wav'; RIR_sim21='./RIR/RIR_LargeRoom2_near_AnglA.wav'; RIR_sim22='./RIR/RIR_LargeRoom2_near_AnglB.wav'; RIR_sim23='./RIR/RIR_LargeRoom2_far_AnglA.wav'; RIR_sim24='./RIR/RIR_LargeRoom2_far_AnglB.wav'; % % List of noise % num_NOISEvar=6; noise_sim1='./NOISE/Noise_SmallRoom1'; noise_sim2='./NOISE/Noise_MediumRoom1'; noise_sim3='./NOISE/Noise_LargeRoom1'; noise_sim4='./NOISE/Noise_SmallRoom2'; noise_sim5='./NOISE/Noise_MediumRoom2'; noise_sim6='./NOISE/Noise_LargeRoom2'; % % Start generating noisy reverberant data with creating new directories % fcount=1; rcount=1; ncount=1; if save_dir(end)=='/'; save_dir_tr=[save_dir,'data/mc_train/']; else save_dir_tr=[save_dir,'/data/mc_train/']; end mkdir([save_dir_tr]); mic_idx=['A';'B';'C';'D';'E';'F';'G';'H']; prev_fname='dummy'; for nlist=1:1 % Open file list eval(['fid=fopen(flist',num2str(nlist),',''r'');']); while 1 % Set data file name fname=fgetl(fid); if ~ischar(fname); break; end idx1=find(fname=='/'); % Make directory if there isn't any if ~strcmp(prev_fname,fname(1:idx1(end))) mkdir([save_dir_tr fname(1:idx1(end))]) end prev_fname=fname(1:idx1(end)); % load speech signal x=audioread([WSJ_dir_name, '/data/', fname, '.wav'])'; % load RIR and noise for "THIS" utterance eval(['RIR=audioread(RIR_sim',num2str(rcount),');']); eval(['NOISE=audioread([noise_sim',num2str(ceil(rcount/4)),',''_',num2str(ncount),'.wav'']);']); % Generate 8ch noisy reverberant data y=gen_obs(x,RIR,NOISE,SNRdB); % cut to length of original signal y = y(1:size(x,2),:); % rotine to cyclicly switch RIRs and noise, utterance by utterance rcount=rcount+1; if rcount>num_RIRvar;rcount=1;ncount=ncount+1;end if ncount>10;ncount=1;end % save the data y=y/4; % common normalization to all the data to prevent clipping % denominator was decided experimentally for ch=1:8 outfilename = [save_dir_tr, fname, '_ch', num2str(ch), '.wav']; eval(['audiowrite(outfilename, y(:,',num2str(ch),'), 16000);']); end display(['sentence ',num2str(fcount),' (out of 7861) finished! (Multi-condition training data)']) fcount=fcount+1; end end %%%% function [y]=gen_obs(x,RIR,NOISE,SNRdB) % function to generate noisy reverberant data x=x'; % calculate direct+early reflection signal for calculating SNR [val,delay]=max(RIR(:,1)); before_impulse=floor(16000*0.001); after_impulse=floor(16000*0.05); RIR_direct=RIR(delay-before_impulse:delay+after_impulse,1); direct_signal=fconv(x,RIR_direct); % obtain reverberant speech for ch=1:8 rev_y(:,ch)=fconv(x,RIR(:,ch)); end % normalize noise data according to the prefixed SNR value NOISE=NOISE(1:size(rev_y,1),:); NOISE_ref=NOISE(:,1); iPn = diag(1./mean(NOISE_ref.^2,1)); Px = diag(mean(direct_signal.^2,1)); Msnr = sqrt(10^(-SNRdB/10)*iPn*Px); scaled_NOISE = NOISE*Msnr; y = rev_y + scaled_NOISE; y = y(delay:end,:); %%%% function [y]=fconv(x, h) %FCONV Fast Convolution % [y] = FCONV(x, h) convolves x and h, and normalizes the output % to +-1. % % x = input vector % h = input vector % % See also CONV % % NOTES: % % 1) I have a short article explaining what a convolution is. It % is available at http://stevem.us/fconv.html. % % %Version 1.0 %Coded by: Stephen G. McGovern, 2003-2004. % %Copyright (c) 2003, Stephen McGovern %All rights reserved. % %THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" %AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE %IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE %ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE %LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR %CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF %SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS %INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN %CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) %ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE %POSSIBILITY OF SUCH DAMAGE. Ly=length(x)+length(h)-1; % Ly2=pow2(nextpow2(Ly)); % Find smallest power of 2 that is > Ly X=fft(x, Ly2); % Fast Fourier transform H=fft(h, Ly2); % Fast Fourier transform Y=X.*H; % y=real(ifft(Y, Ly2)); % Inverse fast Fourier transform y=y(1:1:Ly); % Take just the first N elements |