Blame view
egs/rm/s5/local/online/run_nnet2_multisplice.sh
4.01 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
#!/bin/bash . ./cmd.sh stage=1 train_stage=-10 use_gpu=true dir=exp/nnet2_online/nnet_ms_a . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if $use_gpu; then if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. Otherwise, call this script with --use-gpu false EOF fi parallel_opts="--gpu 1" num_threads=1 minibatch_size=512 else # Use 4 nnet jobs just like run_4d_gpu.sh so the results should be # almost the same, but this may be a little bit slow. num_threads=16 minibatch_size=128 parallel_opts="--num-threads $num_threads" fi # stages 1 through 3 run in run_nnet2_common.sh. local/online/run_nnet2_common.sh --stage $stage || exit 1; if [ $stage -le 4 ]; then steps/nnet2/train_multisplice_accel2.sh --stage $train_stage \ --splice-indexes "layer0/-2:-1:0:1:2 layer1/-3:1 layer2/-5:3" \ --num-hidden-layers 3 \ --feat-type raw \ --online-ivector-dir exp/nnet2_online/ivectors \ --cmvn-opts "--norm-means=false --norm-vars=false" \ --num-threads "$num_threads" \ --minibatch-size "$minibatch_size" \ --parallel-opts "$parallel_opts" \ --num-jobs-initial 2 --num-jobs-final 4 \ --num-epochs 25 \ --add-layers-period 1 \ --mix-up 4000 \ --initial-effective-lrate 0.005 --final-effective-lrate 0.0005 \ --cmd "$decode_cmd" \ --pnorm-input-dim 800 \ --pnorm-output-dim 160 \ data/train data/lang exp/tri3b_ali $dir || exit 1; fi if [ $stage -le 5 ]; then steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj 4 \ data/test exp/nnet2_online/extractor exp/nnet2_online/ivectors_test || exit 1; fi if [ $stage -le 6 ]; then # Note: comparing the results of this with run_online_decoding_nnet2_baseline.sh, # it's a bit worse, meaning the iVectors seem to hurt at this amount of data. # However, experiments by Haihua Xu (not checked in yet) on WSJ, show it helping # nicely. This setup seems to have too little data for it to work, but it suffices # to demonstrate the scripts. We will likely modify it to add noise to the # iVectors in training, which will tend to mitigate the over-training. steps/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 \ --online-ivector-dir exp/nnet2_online/ivectors_test \ exp/tri3b/graph data/test $dir/decode & steps/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 \ --online-ivector-dir exp/nnet2_online/ivectors_test \ exp/tri3b/graph_ug data/test $dir/decode_ug || exit 1; wait fi if [ $stage -le 7 ]; then # If this setup used PLP features, we'd have to give the option --feature-type plp # to the script below. steps/online/nnet2/prepare_online_decoding.sh data/lang exp/nnet2_online/extractor \ "$dir" ${dir}_online || exit 1; fi if [ $stage -le 8 ]; then # do the actual online decoding with iVectors. steps/online/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 \ exp/tri3b/graph data/test ${dir}_online/decode & steps/online/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 \ exp/tri3b/graph_ug data/test ${dir}_online/decode_ug || exit 1; wait fi if [ $stage -le 9 ]; then # this version of the decoding treats each utterance separately # without carrying forward speaker information. steps/online/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 \ --per-utt true \ exp/tri3b/graph data/test ${dir}_online/decode_per_utt & steps/online/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 \ --per-utt true \ exp/tri3b/graph_ug data/test ${dir}_online/decode_ug_per_utt || exit 1; wait fi exit 0; # see ../../RESULTS for results. It's about the same as the non-multisplice # recipe, but I'm not doing much tuning on RM... it has too little data # for any of these DNN things to really work well |