Blame view

egs/rm/s5/local/online/run_nnet2_multisplice.sh 4.01 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
  #!/bin/bash
  
  . ./cmd.sh
  
  
  stage=1
  train_stage=-10
  use_gpu=true
  dir=exp/nnet2_online/nnet_ms_a
  
  
  . ./cmd.sh
  . ./path.sh
  . ./utils/parse_options.sh
  
  if $use_gpu; then
    if ! cuda-compiled; then
      cat <<EOF && exit 1
  This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
  If you want to use GPUs (and have them), go to src/, and configure and make on a machine
  where "nvcc" is installed.  Otherwise, call this script with --use-gpu false
  EOF
    fi
    parallel_opts="--gpu 1"
    num_threads=1
    minibatch_size=512
  else
    # Use 4 nnet jobs just like run_4d_gpu.sh so the results should be
    # almost the same, but this may be a little bit slow.
    num_threads=16
    minibatch_size=128
    parallel_opts="--num-threads $num_threads"
  fi
  
  
  
  # stages 1 through 3 run in run_nnet2_common.sh.
  
  local/online/run_nnet2_common.sh --stage  $stage || exit 1;
  
  
  if [ $stage -le 4 ]; then
    steps/nnet2/train_multisplice_accel2.sh --stage $train_stage \
      --splice-indexes "layer0/-2:-1:0:1:2 layer1/-3:1 layer2/-5:3" \
      --num-hidden-layers 3 \
      --feat-type raw \
      --online-ivector-dir exp/nnet2_online/ivectors \
      --cmvn-opts "--norm-means=false --norm-vars=false" \
      --num-threads "$num_threads" \
      --minibatch-size "$minibatch_size" \
      --parallel-opts "$parallel_opts" \
      --num-jobs-initial 2 --num-jobs-final 4 \
      --num-epochs 25 \
      --add-layers-period 1 \
      --mix-up 4000 \
      --initial-effective-lrate 0.005 --final-effective-lrate 0.0005 \
      --cmd "$decode_cmd" \
      --pnorm-input-dim 800 \
      --pnorm-output-dim 160 \
      data/train data/lang exp/tri3b_ali $dir  || exit 1;
  fi
  
  if [ $stage -le 5 ]; then
    steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj 4 \
      data/test exp/nnet2_online/extractor exp/nnet2_online/ivectors_test || exit 1;
  fi
  
  
  if [ $stage -le 6 ]; then
    # Note: comparing the results of this with run_online_decoding_nnet2_baseline.sh,
    # it's a bit worse, meaning the iVectors seem to hurt at this amount of data.
    # However, experiments by Haihua Xu (not checked in yet) on WSJ, show it helping
    # nicely.  This setup seems to have too little data for it to work, but it suffices
    # to demonstrate the scripts.   We will likely modify it to add noise to the
    # iVectors in training, which will tend to mitigate the over-training.
    steps/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 \
      --online-ivector-dir exp/nnet2_online/ivectors_test \
      exp/tri3b/graph data/test $dir/decode  &
  
    steps/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 \
      --online-ivector-dir exp/nnet2_online/ivectors_test \
      exp/tri3b/graph_ug data/test $dir/decode_ug || exit 1;
  
    wait
  fi
  
  if [ $stage -le 7 ]; then
    # If this setup used PLP features, we'd have to give the option --feature-type plp
    # to the script below.
    steps/online/nnet2/prepare_online_decoding.sh data/lang exp/nnet2_online/extractor \
      "$dir" ${dir}_online || exit 1;
  fi
  
  if [ $stage -le 8 ]; then
    # do the actual online decoding with iVectors.
    steps/online/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 \
      exp/tri3b/graph data/test ${dir}_online/decode &
    steps/online/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 \
      exp/tri3b/graph_ug data/test ${dir}_online/decode_ug || exit 1;
    wait
  fi
  
  if [ $stage -le 9 ]; then
    # this version of the decoding treats each utterance separately
    # without carrying forward speaker information.
    steps/online/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 \
      --per-utt true \
      exp/tri3b/graph data/test ${dir}_online/decode_per_utt &
    steps/online/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 \
      --per-utt true \
      exp/tri3b/graph_ug data/test ${dir}_online/decode_ug_per_utt || exit 1;
    wait
  fi
  
  exit 0;
  
  
  
  # see ../../RESULTS for results.  It's about the same as the non-multisplice
  # recipe, but I'm not doing much tuning on RM... it has too little data
  # for any of these DNN things to really work well