run_nnet2_multisplice.sh
4.01 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
#!/bin/bash
. ./cmd.sh
stage=1
train_stage=-10
use_gpu=true
dir=exp/nnet2_online/nnet_ms_a
. ./cmd.sh
. ./path.sh
. ./utils/parse_options.sh
if $use_gpu; then
if ! cuda-compiled; then
cat <<EOF && exit 1
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
If you want to use GPUs (and have them), go to src/, and configure and make on a machine
where "nvcc" is installed. Otherwise, call this script with --use-gpu false
EOF
fi
parallel_opts="--gpu 1"
num_threads=1
minibatch_size=512
else
# Use 4 nnet jobs just like run_4d_gpu.sh so the results should be
# almost the same, but this may be a little bit slow.
num_threads=16
minibatch_size=128
parallel_opts="--num-threads $num_threads"
fi
# stages 1 through 3 run in run_nnet2_common.sh.
local/online/run_nnet2_common.sh --stage $stage || exit 1;
if [ $stage -le 4 ]; then
steps/nnet2/train_multisplice_accel2.sh --stage $train_stage \
--splice-indexes "layer0/-2:-1:0:1:2 layer1/-3:1 layer2/-5:3" \
--num-hidden-layers 3 \
--feat-type raw \
--online-ivector-dir exp/nnet2_online/ivectors \
--cmvn-opts "--norm-means=false --norm-vars=false" \
--num-threads "$num_threads" \
--minibatch-size "$minibatch_size" \
--parallel-opts "$parallel_opts" \
--num-jobs-initial 2 --num-jobs-final 4 \
--num-epochs 25 \
--add-layers-period 1 \
--mix-up 4000 \
--initial-effective-lrate 0.005 --final-effective-lrate 0.0005 \
--cmd "$decode_cmd" \
--pnorm-input-dim 800 \
--pnorm-output-dim 160 \
data/train data/lang exp/tri3b_ali $dir || exit 1;
fi
if [ $stage -le 5 ]; then
steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj 4 \
data/test exp/nnet2_online/extractor exp/nnet2_online/ivectors_test || exit 1;
fi
if [ $stage -le 6 ]; then
# Note: comparing the results of this with run_online_decoding_nnet2_baseline.sh,
# it's a bit worse, meaning the iVectors seem to hurt at this amount of data.
# However, experiments by Haihua Xu (not checked in yet) on WSJ, show it helping
# nicely. This setup seems to have too little data for it to work, but it suffices
# to demonstrate the scripts. We will likely modify it to add noise to the
# iVectors in training, which will tend to mitigate the over-training.
steps/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 \
--online-ivector-dir exp/nnet2_online/ivectors_test \
exp/tri3b/graph data/test $dir/decode &
steps/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 \
--online-ivector-dir exp/nnet2_online/ivectors_test \
exp/tri3b/graph_ug data/test $dir/decode_ug || exit 1;
wait
fi
if [ $stage -le 7 ]; then
# If this setup used PLP features, we'd have to give the option --feature-type plp
# to the script below.
steps/online/nnet2/prepare_online_decoding.sh data/lang exp/nnet2_online/extractor \
"$dir" ${dir}_online || exit 1;
fi
if [ $stage -le 8 ]; then
# do the actual online decoding with iVectors.
steps/online/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 \
exp/tri3b/graph data/test ${dir}_online/decode &
steps/online/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 \
exp/tri3b/graph_ug data/test ${dir}_online/decode_ug || exit 1;
wait
fi
if [ $stage -le 9 ]; then
# this version of the decoding treats each utterance separately
# without carrying forward speaker information.
steps/online/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 \
--per-utt true \
exp/tri3b/graph data/test ${dir}_online/decode_per_utt &
steps/online/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 \
--per-utt true \
exp/tri3b/graph_ug data/test ${dir}_online/decode_ug_per_utt || exit 1;
wait
fi
exit 0;
# see ../../RESULTS for results. It's about the same as the non-multisplice
# recipe, but I'm not doing much tuning on RM... it has too little data
# for any of these DNN things to really work well