Blame view
egs/sre08/v1/sid/nnet3/xvector/get_egs.sh
11.9 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
#!/bin/bash # Copyright 2017 Johns Hopkins University (Author: Daniel Povey) # 2017 Johns Hopkins University (Author: Daniel Garcia-Romero) # 2017 David Snyder # Apache 2.0 # # This script dumps training examples (egs) for multiclass xvector training. # These egs consist of a data chunk and a zero-based speaker label. # Each archive of egs has, in general, a different input chunk-size. # We don't mix together different lengths in the same archive, because it # would require us to repeatedly run the compilation process within the same # training job. # # This script, which will generally be called from other neural net training # scripts, extracts the training examples used to train the neural net (and # also the validation examples used for diagnostics), and puts them in # separate archives. # Begin configuration section. cmd=run.pl # each archive has data-chunks off length randomly chosen between # $min_frames_per_eg and $max_frames_per_eg. min_frames_per_chunk=50 max_frames_per_chunk=300 frames_per_iter=10000000 # target number of frames per archive. frames_per_iter_diagnostic=100000 # have this many frames per archive for # the archives used for diagnostics. num_diagnostic_archives=3 # we want to test the training likelihoods # on a range of utterance lengths, and this number controls # how many archives we evaluate on. compress=true # set this to false to disable compression (e.g. if you want to see whether # results are affected). num_heldout_utts=100 # number of utterances held out for training subset num_repeats=1 # number of times each speaker repeats per archive stage=0 nj=6 # This should be set to the maximum number of jobs you are # comfortable to run in parallel; you can increase it if your disk # speed is greater and you have more machines. echo "$0 $@" # Print the command line for logging if [ -f path.sh ]; then . ./path.sh; fi . parse_options.sh || exit 1; if [ $# != 2 ]; then echo "Usage: $0 [opts] <data> <egs-dir>" echo " e.g.: $0 data/train exp/xvector_a/egs" echo "" echo "Main options (for others, see top of script file)" echo " --config <config-file> # config file containing options" echo " --nj <nj> # The maximum number of jobs you want to run in" echo " # parallel (increase this only if you have good disk and" echo " # network speed). default=6" echo " --cmd (utils/run.pl;utils/queue.pl <queue opts>) # how to run jobs." echo " --min-frames-per-eg <#frames;50> # The minimum number of frames per chunk that we dump" echo " --max-frames-per-eg <#frames;200> # The maximum number of frames per chunk that we dump" echo " --num-repeats <#repeats;1> # The (approximate) number of times the training" echo " # data is repeated in the egs" echo " --frames-per-iter <#samples;1000000> # Target number of frames per archive" echo " --num-diagnostic-archives <#archives;3> # Option that controls how many different versions of" echo " # the train and validation archives we create (e.g." echo " # train_subset.{1,2,3}.egs and valid.{1,2,3}.egs by default;" echo " # they contain different utterance lengths." echo " --frames-per-iter-diagnostic <#samples;100000> # Target number of frames for the diagnostic archives" echo " # {train_subset,valid}.*.egs" echo " --stage <stage|0> # Used to run a partially-completed training process from somewhere in" echo " # the middle." exit 1; fi data=$1 dir=$2 for f in $data/utt2num_frames $data/feats.scp ; do [ ! -f $f ] && echo "$0: expected file $f" && exit 1; done feat_dim=$(feat-to-dim scp:$data/feats.scp -) || exit 1 mkdir -p $dir/info $dir/info $dir/temp temp=$dir/temp echo $feat_dim > $dir/info/feat_dim echo '0' > $dir/info/left_context # The examples have at least min_frames_per_chunk right context. echo $min_frames_per_chunk > $dir/info/right_context echo '1' > $dir/info/frames_per_eg cp $data/utt2num_frames $dir/temp/utt2num_frames if [ $stage -le 0 ]; then echo "$0: Preparing train and validation lists" # Pick a list of heldout utterances for validation egs awk '{print $1}' $data/utt2spk | utils/shuffle_list.pl | head -$num_heldout_utts > $temp/valid_uttlist || exit 1; # The remaining utterances are used for training egs utils/filter_scp.pl --exclude $temp/valid_uttlist $temp/utt2num_frames > $temp/utt2num_frames.train utils/filter_scp.pl $temp/valid_uttlist $temp/utt2num_frames > $temp/utt2num_frames.valid # Pick a subset of the training list for diagnostics awk '{print $1}' $temp/utt2num_frames.train | utils/shuffle_list.pl | head -$num_heldout_utts > $temp/train_subset_uttlist || exit 1; utils/filter_scp.pl $temp/train_subset_uttlist <$temp/utt2num_frames.train > $temp/utt2num_frames.train_subset # Create a mapping from utterance to speaker ID (an integer) awk -v id=0 '{print $1, id++}' $data/spk2utt > $temp/spk2int utils/sym2int.pl -f 2 $temp/spk2int $data/utt2spk > $temp/utt2int utils/filter_scp.pl $temp/utt2num_frames.train $temp/utt2int > $temp/utt2int.train utils/filter_scp.pl $temp/utt2num_frames.valid $temp/utt2int > $temp/utt2int.valid utils/filter_scp.pl $temp/utt2num_frames.train_subset $temp/utt2int > $temp/utt2int.train_subset fi num_pdfs=$(awk '{print $2}' $temp/utt2int | sort | uniq -c | wc -l) # The script assumes you've prepared the features ahead of time. feats="scp,s,cs:utils/filter_scp.pl $temp/ranges.JOB $data/feats.scp |" train_subset_feats="scp,s,cs:utils/filter_scp.pl $temp/train_subset_ranges.1 $data/feats.scp |" valid_feats="scp,s,cs:utils/filter_scp.pl $temp/valid_ranges.1 $data/feats.scp |" # first for the training data... work out how many archives. num_train_frames=$(awk '{n += $2} END{print n}' <$temp/utt2num_frames.train) num_train_subset_frames=$(awk '{n += $2} END{print n}' <$temp/utt2num_frames.train_subset) echo $num_train_frames >$dir/info/num_frames num_train_archives=$[($num_train_frames*$num_repeats)/$frames_per_iter + 1] echo "$0: Producing $num_train_archives archives for training" echo $num_train_archives > $dir/info/num_archives echo $num_diagnostic_archives > $dir/info/num_diagnostic_archives if [ $nj -gt $num_train_archives ]; then echo "$0: Reducing num-jobs $nj to number of training archives $num_train_archives" nj=$num_train_archives fi if [ $stage -le 1 ]; then if [ -e $dir/storage ]; then # Make soft links to storage directories, if distributing this way.. See # utils/create_split_dir.pl. echo "$0: creating data links" utils/create_data_link.pl $(for x in $(seq $num_train_archives); do echo $dir/egs.$x.ark; done) utils/create_data_link.pl $(for x in $(seq $num_train_archives); do echo $dir/egs_temp.$x.ark; done) fi fi if [ $stage -le 2 ]; then echo "$0: Allocating training examples" $cmd $dir/log/allocate_examples_train.log \ sid/nnet3/xvector/allocate_egs.py \ --num-repeats=$num_repeats \ --min-frames-per-chunk=$min_frames_per_chunk \ --max-frames-per-chunk=$max_frames_per_chunk \ --frames-per-iter=$frames_per_iter \ --num-archives=$num_train_archives --num-jobs=$nj \ --utt2len-filename=$dir/temp/utt2num_frames.train \ --utt2int-filename=$dir/temp/utt2int.train --egs-dir=$dir || exit 1 echo "$0: Allocating training subset examples" $cmd $dir/log/allocate_examples_train_subset.log \ sid/nnet3/xvector/allocate_egs.py \ --prefix train_subset \ --num-repeats=1 \ --min-frames-per-chunk=$min_frames_per_chunk \ --max-frames-per-chunk=$max_frames_per_chunk \ --randomize-chunk-length false \ --frames-per-iter=$frames_per_iter_diagnostic \ --num-archives=$num_diagnostic_archives --num-jobs=1 \ --utt2len-filename=$dir/temp/utt2num_frames.train_subset \ --utt2int-filename=$dir/temp/utt2int.train_subset --egs-dir=$dir || exit 1 echo "$0: Allocating validation examples" $cmd $dir/log/allocate_examples_valid.log \ sid/nnet3/xvector/allocate_egs.py \ --prefix valid \ --num-repeats=1 \ --min-frames-per-chunk=$min_frames_per_chunk \ --max-frames-per-chunk=$max_frames_per_chunk \ --randomize-chunk-length false \ --frames-per-iter=$frames_per_iter_diagnostic \ --num-archives=$num_diagnostic_archives --num-jobs=1 \ --utt2len-filename=$dir/temp/utt2num_frames.valid \ --utt2int-filename=$dir/temp/utt2int.valid --egs-dir=$dir || exit 1 fi # At this stage we'll have created the ranges files that define how many egs # there are and where they come from. If this is your first time running this # script, you might decide to put an exit 1 command here, and inspect the # contents of exp/$dir/temp/ranges.* before proceeding to the next stage. if [ $stage -le 3 ]; then echo "$0: Generating training examples on disk" rm $dir/.error 2>/dev/null for g in $(seq $nj); do outputs=$(awk '{for(i=1;i<=NF;i++)printf("ark:%s ",$i);}' $temp/outputs.$g) $cmd $dir/log/train_create_examples.$g.log \ nnet3-xvector-get-egs --compress=$compress --num-pdfs=$num_pdfs $temp/ranges.$g \ "`echo $feats | sed s/JOB/$g/g`" $outputs || touch $dir/.error & done train_subset_outputs=$(awk '{for(i=1;i<=NF;i++)printf("ark:%s ",$i);}' $temp/train_subset_outputs.1) echo "$0: Generating training subset examples on disk" $cmd $dir/log/train_subset_create_examples.1.log \ nnet3-xvector-get-egs --compress=$compress --num-pdfs=$num_pdfs $temp/train_subset_ranges.1 \ "$train_subset_feats" $train_subset_outputs || touch $dir/.error & wait valid_outputs=$(awk '{for(i=1;i<=NF;i++)printf("ark:%s ",$i);}' $temp/valid_outputs.1) echo "$0: Generating validation examples on disk" $cmd $dir/log/valid_create_examples.1.log \ nnet3-xvector-get-egs --compress=$compress --num-pdfs=$num_pdfs $temp/valid_ranges.1 \ "$valid_feats" $valid_outputs || touch $dir/.error & wait if [ -f $dir/.error ]; then echo "$0: Problem detected while dumping examples" exit 1 fi fi if [ $stage -le 4 ]; then echo "$0: Shuffling order of archives on disk" $cmd --max-jobs-run $nj JOB=1:$num_train_archives $dir/log/shuffle.JOB.log \ nnet3-shuffle-egs --srand=JOB ark:$dir/egs_temp.JOB.ark \ ark,scp:$dir/egs.JOB.ark,$dir/egs.JOB.scp || exit 1; $cmd --max-jobs-run $nj JOB=1:$num_diagnostic_archives $dir/log/train_subset_shuffle.JOB.log \ nnet3-shuffle-egs --srand=JOB ark:$dir/train_subset_egs_temp.JOB.ark \ ark,scp:$dir/train_diagnostic_egs.JOB.ark,$dir/train_diagnostic_egs.JOB.scp || exit 1; $cmd --max-jobs-run $nj JOB=1:$num_diagnostic_archives $dir/log/valid_shuffle.JOB.log \ nnet3-shuffle-egs --srand=JOB ark:$dir/valid_egs_temp.JOB.ark \ ark,scp:$dir/valid_egs.JOB.ark,$dir/valid_egs.JOB.scp || exit 1; fi if [ $stage -le 5 ]; then for file in $(for x in $(seq $num_diagnostic_archives); do echo $dir/train_subset_egs_temp.$x.ark; done) \ $(for x in $(seq $num_diagnostic_archives); do echo $dir/valid_egs_temp.$x.ark; done) \ $(for x in $(seq $num_train_archives); do echo $dir/egs_temp.$x.ark; done); do [ -L $file ] && rm $(readlink -f $file) rm $file done rm -rf $dir/valid_diagnostic.scp $dir/train_diagnostic.scp for x in $(seq $num_diagnostic_archives); do cat $dir/train_diagnostic_egs.$x.scp >> $dir/train_diagnostic.scp cat $dir/valid_egs.$x.scp >> $dir/valid_diagnostic.scp done ln -sf train_diagnostic.scp $dir/combine.scp fi echo "$0: Finished preparing training examples" |