get_egs.sh
11.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
#!/bin/bash
# Copyright 2017 Johns Hopkins University (Author: Daniel Povey)
# 2017 Johns Hopkins University (Author: Daniel Garcia-Romero)
# 2017 David Snyder
# Apache 2.0
#
# This script dumps training examples (egs) for multiclass xvector training.
# These egs consist of a data chunk and a zero-based speaker label.
# Each archive of egs has, in general, a different input chunk-size.
# We don't mix together different lengths in the same archive, because it
# would require us to repeatedly run the compilation process within the same
# training job.
#
# This script, which will generally be called from other neural net training
# scripts, extracts the training examples used to train the neural net (and
# also the validation examples used for diagnostics), and puts them in
# separate archives.
# Begin configuration section.
cmd=run.pl
# each archive has data-chunks off length randomly chosen between
# $min_frames_per_eg and $max_frames_per_eg.
min_frames_per_chunk=50
max_frames_per_chunk=300
frames_per_iter=10000000 # target number of frames per archive.
frames_per_iter_diagnostic=100000 # have this many frames per archive for
# the archives used for diagnostics.
num_diagnostic_archives=3 # we want to test the training likelihoods
# on a range of utterance lengths, and this number controls
# how many archives we evaluate on.
compress=true # set this to false to disable compression (e.g. if you want to see whether
# results are affected).
num_heldout_utts=100 # number of utterances held out for training subset
num_repeats=1 # number of times each speaker repeats per archive
stage=0
nj=6 # This should be set to the maximum number of jobs you are
# comfortable to run in parallel; you can increase it if your disk
# speed is greater and you have more machines.
echo "$0 $@" # Print the command line for logging
if [ -f path.sh ]; then . ./path.sh; fi
. parse_options.sh || exit 1;
if [ $# != 2 ]; then
echo "Usage: $0 [opts] <data> <egs-dir>"
echo " e.g.: $0 data/train exp/xvector_a/egs"
echo ""
echo "Main options (for others, see top of script file)"
echo " --config <config-file> # config file containing options"
echo " --nj <nj> # The maximum number of jobs you want to run in"
echo " # parallel (increase this only if you have good disk and"
echo " # network speed). default=6"
echo " --cmd (utils/run.pl;utils/queue.pl <queue opts>) # how to run jobs."
echo " --min-frames-per-eg <#frames;50> # The minimum number of frames per chunk that we dump"
echo " --max-frames-per-eg <#frames;200> # The maximum number of frames per chunk that we dump"
echo " --num-repeats <#repeats;1> # The (approximate) number of times the training"
echo " # data is repeated in the egs"
echo " --frames-per-iter <#samples;1000000> # Target number of frames per archive"
echo " --num-diagnostic-archives <#archives;3> # Option that controls how many different versions of"
echo " # the train and validation archives we create (e.g."
echo " # train_subset.{1,2,3}.egs and valid.{1,2,3}.egs by default;"
echo " # they contain different utterance lengths."
echo " --frames-per-iter-diagnostic <#samples;100000> # Target number of frames for the diagnostic archives"
echo " # {train_subset,valid}.*.egs"
echo " --stage <stage|0> # Used to run a partially-completed training process from somewhere in"
echo " # the middle."
exit 1;
fi
data=$1
dir=$2
for f in $data/utt2num_frames $data/feats.scp ; do
[ ! -f $f ] && echo "$0: expected file $f" && exit 1;
done
feat_dim=$(feat-to-dim scp:$data/feats.scp -) || exit 1
mkdir -p $dir/info $dir/info $dir/temp
temp=$dir/temp
echo $feat_dim > $dir/info/feat_dim
echo '0' > $dir/info/left_context
# The examples have at least min_frames_per_chunk right context.
echo $min_frames_per_chunk > $dir/info/right_context
echo '1' > $dir/info/frames_per_eg
cp $data/utt2num_frames $dir/temp/utt2num_frames
if [ $stage -le 0 ]; then
echo "$0: Preparing train and validation lists"
# Pick a list of heldout utterances for validation egs
awk '{print $1}' $data/utt2spk | utils/shuffle_list.pl | head -$num_heldout_utts > $temp/valid_uttlist || exit 1;
# The remaining utterances are used for training egs
utils/filter_scp.pl --exclude $temp/valid_uttlist $temp/utt2num_frames > $temp/utt2num_frames.train
utils/filter_scp.pl $temp/valid_uttlist $temp/utt2num_frames > $temp/utt2num_frames.valid
# Pick a subset of the training list for diagnostics
awk '{print $1}' $temp/utt2num_frames.train | utils/shuffle_list.pl | head -$num_heldout_utts > $temp/train_subset_uttlist || exit 1;
utils/filter_scp.pl $temp/train_subset_uttlist <$temp/utt2num_frames.train > $temp/utt2num_frames.train_subset
# Create a mapping from utterance to speaker ID (an integer)
awk -v id=0 '{print $1, id++}' $data/spk2utt > $temp/spk2int
utils/sym2int.pl -f 2 $temp/spk2int $data/utt2spk > $temp/utt2int
utils/filter_scp.pl $temp/utt2num_frames.train $temp/utt2int > $temp/utt2int.train
utils/filter_scp.pl $temp/utt2num_frames.valid $temp/utt2int > $temp/utt2int.valid
utils/filter_scp.pl $temp/utt2num_frames.train_subset $temp/utt2int > $temp/utt2int.train_subset
fi
num_pdfs=$(awk '{print $2}' $temp/utt2int | sort | uniq -c | wc -l)
# The script assumes you've prepared the features ahead of time.
feats="scp,s,cs:utils/filter_scp.pl $temp/ranges.JOB $data/feats.scp |"
train_subset_feats="scp,s,cs:utils/filter_scp.pl $temp/train_subset_ranges.1 $data/feats.scp |"
valid_feats="scp,s,cs:utils/filter_scp.pl $temp/valid_ranges.1 $data/feats.scp |"
# first for the training data... work out how many archives.
num_train_frames=$(awk '{n += $2} END{print n}' <$temp/utt2num_frames.train)
num_train_subset_frames=$(awk '{n += $2} END{print n}' <$temp/utt2num_frames.train_subset)
echo $num_train_frames >$dir/info/num_frames
num_train_archives=$[($num_train_frames*$num_repeats)/$frames_per_iter + 1]
echo "$0: Producing $num_train_archives archives for training"
echo $num_train_archives > $dir/info/num_archives
echo $num_diagnostic_archives > $dir/info/num_diagnostic_archives
if [ $nj -gt $num_train_archives ]; then
echo "$0: Reducing num-jobs $nj to number of training archives $num_train_archives"
nj=$num_train_archives
fi
if [ $stage -le 1 ]; then
if [ -e $dir/storage ]; then
# Make soft links to storage directories, if distributing this way.. See
# utils/create_split_dir.pl.
echo "$0: creating data links"
utils/create_data_link.pl $(for x in $(seq $num_train_archives); do echo $dir/egs.$x.ark; done)
utils/create_data_link.pl $(for x in $(seq $num_train_archives); do echo $dir/egs_temp.$x.ark; done)
fi
fi
if [ $stage -le 2 ]; then
echo "$0: Allocating training examples"
$cmd $dir/log/allocate_examples_train.log \
sid/nnet3/xvector/allocate_egs.py \
--num-repeats=$num_repeats \
--min-frames-per-chunk=$min_frames_per_chunk \
--max-frames-per-chunk=$max_frames_per_chunk \
--frames-per-iter=$frames_per_iter \
--num-archives=$num_train_archives --num-jobs=$nj \
--utt2len-filename=$dir/temp/utt2num_frames.train \
--utt2int-filename=$dir/temp/utt2int.train --egs-dir=$dir || exit 1
echo "$0: Allocating training subset examples"
$cmd $dir/log/allocate_examples_train_subset.log \
sid/nnet3/xvector/allocate_egs.py \
--prefix train_subset \
--num-repeats=1 \
--min-frames-per-chunk=$min_frames_per_chunk \
--max-frames-per-chunk=$max_frames_per_chunk \
--randomize-chunk-length false \
--frames-per-iter=$frames_per_iter_diagnostic \
--num-archives=$num_diagnostic_archives --num-jobs=1 \
--utt2len-filename=$dir/temp/utt2num_frames.train_subset \
--utt2int-filename=$dir/temp/utt2int.train_subset --egs-dir=$dir || exit 1
echo "$0: Allocating validation examples"
$cmd $dir/log/allocate_examples_valid.log \
sid/nnet3/xvector/allocate_egs.py \
--prefix valid \
--num-repeats=1 \
--min-frames-per-chunk=$min_frames_per_chunk \
--max-frames-per-chunk=$max_frames_per_chunk \
--randomize-chunk-length false \
--frames-per-iter=$frames_per_iter_diagnostic \
--num-archives=$num_diagnostic_archives --num-jobs=1 \
--utt2len-filename=$dir/temp/utt2num_frames.valid \
--utt2int-filename=$dir/temp/utt2int.valid --egs-dir=$dir || exit 1
fi
# At this stage we'll have created the ranges files that define how many egs
# there are and where they come from. If this is your first time running this
# script, you might decide to put an exit 1 command here, and inspect the
# contents of exp/$dir/temp/ranges.* before proceeding to the next stage.
if [ $stage -le 3 ]; then
echo "$0: Generating training examples on disk"
rm $dir/.error 2>/dev/null
for g in $(seq $nj); do
outputs=$(awk '{for(i=1;i<=NF;i++)printf("ark:%s ",$i);}' $temp/outputs.$g)
$cmd $dir/log/train_create_examples.$g.log \
nnet3-xvector-get-egs --compress=$compress --num-pdfs=$num_pdfs $temp/ranges.$g \
"`echo $feats | sed s/JOB/$g/g`" $outputs || touch $dir/.error &
done
train_subset_outputs=$(awk '{for(i=1;i<=NF;i++)printf("ark:%s ",$i);}' $temp/train_subset_outputs.1)
echo "$0: Generating training subset examples on disk"
$cmd $dir/log/train_subset_create_examples.1.log \
nnet3-xvector-get-egs --compress=$compress --num-pdfs=$num_pdfs $temp/train_subset_ranges.1 \
"$train_subset_feats" $train_subset_outputs || touch $dir/.error &
wait
valid_outputs=$(awk '{for(i=1;i<=NF;i++)printf("ark:%s ",$i);}' $temp/valid_outputs.1)
echo "$0: Generating validation examples on disk"
$cmd $dir/log/valid_create_examples.1.log \
nnet3-xvector-get-egs --compress=$compress --num-pdfs=$num_pdfs $temp/valid_ranges.1 \
"$valid_feats" $valid_outputs || touch $dir/.error &
wait
if [ -f $dir/.error ]; then
echo "$0: Problem detected while dumping examples"
exit 1
fi
fi
if [ $stage -le 4 ]; then
echo "$0: Shuffling order of archives on disk"
$cmd --max-jobs-run $nj JOB=1:$num_train_archives $dir/log/shuffle.JOB.log \
nnet3-shuffle-egs --srand=JOB ark:$dir/egs_temp.JOB.ark \
ark,scp:$dir/egs.JOB.ark,$dir/egs.JOB.scp || exit 1;
$cmd --max-jobs-run $nj JOB=1:$num_diagnostic_archives $dir/log/train_subset_shuffle.JOB.log \
nnet3-shuffle-egs --srand=JOB ark:$dir/train_subset_egs_temp.JOB.ark \
ark,scp:$dir/train_diagnostic_egs.JOB.ark,$dir/train_diagnostic_egs.JOB.scp || exit 1;
$cmd --max-jobs-run $nj JOB=1:$num_diagnostic_archives $dir/log/valid_shuffle.JOB.log \
nnet3-shuffle-egs --srand=JOB ark:$dir/valid_egs_temp.JOB.ark \
ark,scp:$dir/valid_egs.JOB.ark,$dir/valid_egs.JOB.scp || exit 1;
fi
if [ $stage -le 5 ]; then
for file in $(for x in $(seq $num_diagnostic_archives); do echo $dir/train_subset_egs_temp.$x.ark; done) \
$(for x in $(seq $num_diagnostic_archives); do echo $dir/valid_egs_temp.$x.ark; done) \
$(for x in $(seq $num_train_archives); do echo $dir/egs_temp.$x.ark; done); do
[ -L $file ] && rm $(readlink -f $file)
rm $file
done
rm -rf $dir/valid_diagnostic.scp $dir/train_diagnostic.scp
for x in $(seq $num_diagnostic_archives); do
cat $dir/train_diagnostic_egs.$x.scp >> $dir/train_diagnostic.scp
cat $dir/valid_egs.$x.scp >> $dir/valid_diagnostic.scp
done
ln -sf train_diagnostic.scp $dir/combine.scp
fi
echo "$0: Finished preparing training examples"