Blame view
egs/tedlium/s5_r2/local/rnnlm/tuning/run_lstm_tdnn.sh
5.66 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
#!/bin/bash # Copyright 2012 Johns Hopkins University (author: Daniel Povey) Tony Robinson # 2017 Hainan Xu # 2018 Ke Li # rnnlm/train_rnnlm.sh: best iteration (out of 9) was 8, linking it to final iteration. # rnnlm/train_rnnlm.sh: train/dev perplexity was 94.1 / 155.1. # Train objf: -6.24 -5.45 -5.12 -4.95 -4.84 -4.74 -4.66 -4.59 -4.52 -4.46 # Dev objf: -11.92 -5.80 -5.32 -5.17 -5.10 -5.07 -5.05 -5.05 -5.04 -5.06 # 1-pass results # %WER 8.3 | 1155 27500 | 92.7 4.9 2.4 1.0 8.3 68.8 | -0.019 | /export/a12/ywang/kaldi/egs/tedlium/s5_r2/exp/chain_cleaned/tdnn_lstm1i_adversarial1.0_interval4_epoches7_lin_to_5_sp_bi/decode_looped_test/score_10_0.0/ctm.filt.filt.sys # 4-gram rescoring # %WER 7.8 | 1155 27500 | 93.1 4.5 2.4 0.9 7.8 66.4 | -0.089 | /export/a12/ywang/kaldi/egs/tedlium/s5_r2/exp/chain_cleaned/tdnn_lstm1i_adversarial1.0_interval4_epoches7_lin_to_5_sp_bi/decode_looped_test_rescore/score_10_0.0/ctm.filt.filt.sys # RNNLM lattice rescoring # %WER 7.2 | 1155 27500 | 93.6 4.0 2.3 0.8 7.2 64.3 | -0.927 | exp/decode_looped_test_rnnlm_tedlium_rescore//score_10_0.0/ctm.filt.filt.sys # RNNLM nbest rescoring # %WER 7.4 | 1155 27500 | 93.4 4.3 2.3 0.9 7.4 64.8 | -0.863 | exp/decode_looped_test_rnnlm_tedlium_nbest_rescore/score_8_0.0/ctm.filt.filt.sys # Begin configuration section. cmd=run.pl decode_cmd=run.pl dir=exp/rnnlm_lstm_tdnn embedding_dim=1024 lstm_rpd=256 lstm_nrpd=256 stage=0 train_stage=-10 epochs=20 # variables for lattice rescoring run_lat_rescore=true run_nbest_rescore=true decode_dir_suffix=rnnlm_tedlium ac_model_dir=exp/chain_cleaned/tdnn_lstm1i_adversarial1.0_interval4_epoches7_lin_to_5_sp_bi ngram_order=4 # approximate the lattice-rescoring by limiting the max-ngram-order # if it's set, it merges histories in the lattice if they share # the same ngram history and this prevents the lattice from # exploding exponentially pruned_rescore=true . ./cmd.sh . ./utils/parse_options.sh wordlist=data/lang/words.txt text=data/train/text dev_sents=10000 text_dir=data/rnnlm/text mkdir -p $dir/config set -e for f in $text $wordlist; do [ ! -f $f ] && \ echo "$0: expected file $f to exist; search for local/prepare_data.sh and utils/prepare_lang.sh in run.sh" && exit 1 done if [ $stage -le 0 ]; then mkdir -p $text_dir cat $text | cut -d ' ' -f2- | head -n $dev_sents > $text_dir/dev.txt cat $text | cut -d ' ' -f2- | tail -n +$[$dev_sents+1] > $text_dir/ted.txt fi if [ $stage -le 1 ]; then cp $wordlist $dir/config/ n=`cat $dir/config/words.txt | wc -l` echo "<brk> $n" >> $dir/config/words.txt # words that are not present in words.txt but are in the training or dev data, will be # mapped to <unk> during training. echo "<unk>" >$dir/config/oov.txt cat > $dir/config/data_weights.txt <<EOF ted 1 1.0 EOF rnnlm/get_unigram_probs.py --vocab-file=$dir/config/words.txt \ --unk-word="<unk>" \ --data-weights-file=$dir/config/data_weights.txt \ $text_dir | awk 'NF==2' >$dir/config/unigram_probs.txt # choose features rnnlm/choose_features.py --unigram-probs=$dir/config/unigram_probs.txt \ --use-constant-feature=true \ --top-word-features=10000 \ --min-frequency 1.0e-03 \ --special-words='<s>,</s>,<brk>,<unk>' \ $dir/config/words.txt > $dir/config/features.txt fi cat >$dir/config/xconfig <<EOF input dim=$embedding_dim name=input relu-renorm-layer name=tdnn1 dim=$embedding_dim input=Append(0, IfDefined(-1)) fast-lstmp-layer name=lstm1 cell-dim=$embedding_dim recurrent-projection-dim=$lstm_rpd non-recurrent-projection-dim=$lstm_nrpd relu-renorm-layer name=tdnn2 dim=$embedding_dim input=Append(0, IfDefined(-2)) fast-lstmp-layer name=lstm2 cell-dim=$embedding_dim recurrent-projection-dim=$lstm_rpd non-recurrent-projection-dim=$lstm_nrpd relu-renorm-layer name=tdnn3 dim=$embedding_dim input=Append(0, IfDefined(-1)) output-layer name=output include-log-softmax=false dim=$embedding_dim EOF rnnlm/validate_config_dir.sh $text_dir $dir/config if [ $stage -le 2 ]; then # the --unigram-factor option is set larger than the default (100) # in order to reduce the size of the sampling LM, because rnnlm-get-egs # was taking up too much CPU (as much as 10 cores). rnnlm/prepare_rnnlm_dir.sh --unigram-factor 200.0 \ $text_dir $dir/config $dir fi if [ $stage -le 3 ]; then rnnlm/train_rnnlm.sh --num-jobs-initial 1 --num-jobs-final 1 \ --stage $train_stage --num-epochs $epochs \ --cmd "queue.pl" $dir fi if [ $stage -le 4 ] && $run_lat_rescore; then echo "$0: Perform lattice-rescoring on $ac_model_dir" pruned= if $pruned_rescore; then pruned=_pruned fi for decode_set in dev test; do decode_dir=${ac_model_dir}/decode_looped_${decode_set}_rescore # Lattice rescoring rnnlm/lmrescore$pruned.sh \ --cmd "$decode_cmd --mem 4G" \ --weight 0.5 --max-ngram-order $ngram_order \ data/lang $dir \ data/${decode_set}_hires ${decode_dir} \ exp/decode_looped_${decode_set}_${decode_dir_suffix}_rescore done fi if [ $stage -le 5 ] && $run_nbest_rescore; then echo "$0: Perform nbest-rescoring on $ac_model_dir" for decode_set in dev test; do decode_dir=${ac_model_dir}/decode_looped_${decode_set}_rescore # nbest rescoring rnnlm/lmrescore_nbest.sh \ --cmd "$decode_cmd --mem 4G" --N 20 \ 0.8 data/lang $dir \ data/${decode_set}_hires ${decode_dir} \ exp/decode_looped_${decode_set}_${decode_dir_suffix}_nbest_rescore done fi exit 0 |