Blame view

egs/tedlium/s5_r2/local/rnnlm/tuning/run_lstm_tdnn.sh 5.66 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
  #!/bin/bash
  
  # Copyright 2012  Johns Hopkins University (author: Daniel Povey)  Tony Robinson
  #           2017  Hainan Xu
  #           2018  Ke Li
  
  # rnnlm/train_rnnlm.sh: best iteration (out of 9) was 8, linking it to final iteration.
  # rnnlm/train_rnnlm.sh: train/dev perplexity was 94.1 / 155.1.
  # Train objf: -6.24 -5.45 -5.12 -4.95 -4.84 -4.74 -4.66 -4.59 -4.52 -4.46
  # Dev objf:   -11.92 -5.80 -5.32 -5.17 -5.10 -5.07 -5.05 -5.05 -5.04 -5.06
  
  # 1-pass results 
  # %WER 8.3 | 1155 27500 | 92.7 4.9 2.4 1.0 8.3 68.8 | -0.019 | /export/a12/ywang/kaldi/egs/tedlium/s5_r2/exp/chain_cleaned/tdnn_lstm1i_adversarial1.0_interval4_epoches7_lin_to_5_sp_bi/decode_looped_test/score_10_0.0/ctm.filt.filt.sys
  
  # 4-gram rescoring
  # %WER 7.8 | 1155 27500 | 93.1 4.5 2.4 0.9 7.8 66.4 | -0.089 | /export/a12/ywang/kaldi/egs/tedlium/s5_r2/exp/chain_cleaned/tdnn_lstm1i_adversarial1.0_interval4_epoches7_lin_to_5_sp_bi/decode_looped_test_rescore/score_10_0.0/ctm.filt.filt.sys
  
  # RNNLM lattice rescoring
  # %WER 7.2 | 1155 27500 | 93.6 4.0 2.3 0.8 7.2 64.3 | -0.927 | exp/decode_looped_test_rnnlm_tedlium_rescore//score_10_0.0/ctm.filt.filt.sys
  
  # RNNLM nbest rescoring
  # %WER 7.4 | 1155 27500 | 93.4 4.3 2.3 0.9 7.4 64.8 | -0.863 | exp/decode_looped_test_rnnlm_tedlium_nbest_rescore/score_8_0.0/ctm.filt.filt.sys
  
  # Begin configuration section.
  cmd=run.pl
  decode_cmd=run.pl
  dir=exp/rnnlm_lstm_tdnn
  embedding_dim=1024
  lstm_rpd=256
  lstm_nrpd=256
  stage=0
  train_stage=-10
  epochs=20
  
  # variables for lattice rescoring
  run_lat_rescore=true
  run_nbest_rescore=true
  decode_dir_suffix=rnnlm_tedlium
  ac_model_dir=exp/chain_cleaned/tdnn_lstm1i_adversarial1.0_interval4_epoches7_lin_to_5_sp_bi
  ngram_order=4 # approximate the lattice-rescoring by limiting the max-ngram-order
                # if it's set, it merges histories in the lattice if they share
                # the same ngram history and this prevents the lattice from 
                # exploding exponentially
  pruned_rescore=true
  
  . ./cmd.sh
  . ./utils/parse_options.sh
  
  wordlist=data/lang/words.txt
  text=data/train/text
  dev_sents=10000
  text_dir=data/rnnlm/text
  mkdir -p $dir/config
  set -e
  
  for f in $text $wordlist; do
    [ ! -f $f ] && \
      echo "$0: expected file $f to exist; search for local/prepare_data.sh and utils/prepare_lang.sh in run.sh" && exit 1
  done
  
  if [ $stage -le 0 ]; then
    mkdir -p $text_dir
    cat $text | cut -d ' ' -f2- | head -n $dev_sents > $text_dir/dev.txt
    cat $text | cut -d ' ' -f2- | tail -n +$[$dev_sents+1] > $text_dir/ted.txt
  fi
  
  if [ $stage -le 1 ]; then
    cp $wordlist $dir/config/
    n=`cat $dir/config/words.txt | wc -l`
    echo "<brk> $n" >> $dir/config/words.txt
  
    # words that are not present in words.txt but are in the training or dev data, will be
    # mapped to <unk> during training.
    echo "<unk>" >$dir/config/oov.txt
  
    cat > $dir/config/data_weights.txt <<EOF
  ted   1   1.0
  EOF
  
    rnnlm/get_unigram_probs.py --vocab-file=$dir/config/words.txt \
                               --unk-word="<unk>" \
                               --data-weights-file=$dir/config/data_weights.txt \
                               $text_dir | awk 'NF==2' >$dir/config/unigram_probs.txt
  
    # choose features
    rnnlm/choose_features.py --unigram-probs=$dir/config/unigram_probs.txt \
                             --use-constant-feature=true \
                             --top-word-features=10000 \
                             --min-frequency 1.0e-03 \
                             --special-words='<s>,</s>,<brk>,<unk>' \
                             $dir/config/words.txt > $dir/config/features.txt
  fi
  
  cat >$dir/config/xconfig <<EOF
  input dim=$embedding_dim name=input
  relu-renorm-layer name=tdnn1 dim=$embedding_dim input=Append(0, IfDefined(-1))
  fast-lstmp-layer name=lstm1 cell-dim=$embedding_dim recurrent-projection-dim=$lstm_rpd non-recurrent-projection-dim=$lstm_nrpd
  relu-renorm-layer name=tdnn2 dim=$embedding_dim input=Append(0, IfDefined(-2))
  fast-lstmp-layer name=lstm2 cell-dim=$embedding_dim recurrent-projection-dim=$lstm_rpd non-recurrent-projection-dim=$lstm_nrpd
  relu-renorm-layer name=tdnn3 dim=$embedding_dim input=Append(0, IfDefined(-1))
  output-layer name=output include-log-softmax=false dim=$embedding_dim
  EOF
  rnnlm/validate_config_dir.sh $text_dir $dir/config
  
  if [ $stage -le 2 ]; then
    # the --unigram-factor option is set larger than the default (100)
    # in order to reduce the size of the sampling LM, because rnnlm-get-egs
    # was taking up too much CPU (as much as 10 cores).
    rnnlm/prepare_rnnlm_dir.sh --unigram-factor 200.0 \
                               $text_dir $dir/config $dir
  fi
  
  if [ $stage -le 3 ]; then
    rnnlm/train_rnnlm.sh --num-jobs-initial 1 --num-jobs-final 1 \
                         --stage $train_stage --num-epochs $epochs \
                         --cmd "queue.pl" $dir
  fi
  
  if [ $stage -le 4 ] && $run_lat_rescore; then
    echo "$0: Perform lattice-rescoring on $ac_model_dir"
    pruned=
    if $pruned_rescore; then
      pruned=_pruned
    fi
    for decode_set in dev test; do
      decode_dir=${ac_model_dir}/decode_looped_${decode_set}_rescore
  
      # Lattice rescoring
      rnnlm/lmrescore$pruned.sh \
        --cmd "$decode_cmd --mem 4G" \
        --weight 0.5 --max-ngram-order $ngram_order \
        data/lang $dir \
        data/${decode_set}_hires ${decode_dir} \
        exp/decode_looped_${decode_set}_${decode_dir_suffix}_rescore
    done
  fi
  
  if [ $stage -le 5 ] && $run_nbest_rescore; then
    echo "$0: Perform nbest-rescoring on $ac_model_dir"
    for decode_set in dev test; do
      decode_dir=${ac_model_dir}/decode_looped_${decode_set}_rescore
  
      # nbest rescoring
      rnnlm/lmrescore_nbest.sh \
        --cmd "$decode_cmd --mem 4G" --N 20 \
        0.8 data/lang $dir \
        data/${decode_set}_hires ${decode_dir} \
        exp/decode_looped_${decode_set}_${decode_dir_suffix}_nbest_rescore
    done
  fi
  
  exit 0