run_lstm_tdnn.sh
5.66 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
#!/bin/bash
# Copyright 2012 Johns Hopkins University (author: Daniel Povey) Tony Robinson
# 2017 Hainan Xu
# 2018 Ke Li
# rnnlm/train_rnnlm.sh: best iteration (out of 9) was 8, linking it to final iteration.
# rnnlm/train_rnnlm.sh: train/dev perplexity was 94.1 / 155.1.
# Train objf: -6.24 -5.45 -5.12 -4.95 -4.84 -4.74 -4.66 -4.59 -4.52 -4.46
# Dev objf: -11.92 -5.80 -5.32 -5.17 -5.10 -5.07 -5.05 -5.05 -5.04 -5.06
# 1-pass results
# %WER 8.3 | 1155 27500 | 92.7 4.9 2.4 1.0 8.3 68.8 | -0.019 | /export/a12/ywang/kaldi/egs/tedlium/s5_r2/exp/chain_cleaned/tdnn_lstm1i_adversarial1.0_interval4_epoches7_lin_to_5_sp_bi/decode_looped_test/score_10_0.0/ctm.filt.filt.sys
# 4-gram rescoring
# %WER 7.8 | 1155 27500 | 93.1 4.5 2.4 0.9 7.8 66.4 | -0.089 | /export/a12/ywang/kaldi/egs/tedlium/s5_r2/exp/chain_cleaned/tdnn_lstm1i_adversarial1.0_interval4_epoches7_lin_to_5_sp_bi/decode_looped_test_rescore/score_10_0.0/ctm.filt.filt.sys
# RNNLM lattice rescoring
# %WER 7.2 | 1155 27500 | 93.6 4.0 2.3 0.8 7.2 64.3 | -0.927 | exp/decode_looped_test_rnnlm_tedlium_rescore//score_10_0.0/ctm.filt.filt.sys
# RNNLM nbest rescoring
# %WER 7.4 | 1155 27500 | 93.4 4.3 2.3 0.9 7.4 64.8 | -0.863 | exp/decode_looped_test_rnnlm_tedlium_nbest_rescore/score_8_0.0/ctm.filt.filt.sys
# Begin configuration section.
cmd=run.pl
decode_cmd=run.pl
dir=exp/rnnlm_lstm_tdnn
embedding_dim=1024
lstm_rpd=256
lstm_nrpd=256
stage=0
train_stage=-10
epochs=20
# variables for lattice rescoring
run_lat_rescore=true
run_nbest_rescore=true
decode_dir_suffix=rnnlm_tedlium
ac_model_dir=exp/chain_cleaned/tdnn_lstm1i_adversarial1.0_interval4_epoches7_lin_to_5_sp_bi
ngram_order=4 # approximate the lattice-rescoring by limiting the max-ngram-order
# if it's set, it merges histories in the lattice if they share
# the same ngram history and this prevents the lattice from
# exploding exponentially
pruned_rescore=true
. ./cmd.sh
. ./utils/parse_options.sh
wordlist=data/lang/words.txt
text=data/train/text
dev_sents=10000
text_dir=data/rnnlm/text
mkdir -p $dir/config
set -e
for f in $text $wordlist; do
[ ! -f $f ] && \
echo "$0: expected file $f to exist; search for local/prepare_data.sh and utils/prepare_lang.sh in run.sh" && exit 1
done
if [ $stage -le 0 ]; then
mkdir -p $text_dir
cat $text | cut -d ' ' -f2- | head -n $dev_sents > $text_dir/dev.txt
cat $text | cut -d ' ' -f2- | tail -n +$[$dev_sents+1] > $text_dir/ted.txt
fi
if [ $stage -le 1 ]; then
cp $wordlist $dir/config/
n=`cat $dir/config/words.txt | wc -l`
echo "<brk> $n" >> $dir/config/words.txt
# words that are not present in words.txt but are in the training or dev data, will be
# mapped to <unk> during training.
echo "<unk>" >$dir/config/oov.txt
cat > $dir/config/data_weights.txt <<EOF
ted 1 1.0
EOF
rnnlm/get_unigram_probs.py --vocab-file=$dir/config/words.txt \
--unk-word="<unk>" \
--data-weights-file=$dir/config/data_weights.txt \
$text_dir | awk 'NF==2' >$dir/config/unigram_probs.txt
# choose features
rnnlm/choose_features.py --unigram-probs=$dir/config/unigram_probs.txt \
--use-constant-feature=true \
--top-word-features=10000 \
--min-frequency 1.0e-03 \
--special-words='<s>,</s>,<brk>,<unk>' \
$dir/config/words.txt > $dir/config/features.txt
fi
cat >$dir/config/xconfig <<EOF
input dim=$embedding_dim name=input
relu-renorm-layer name=tdnn1 dim=$embedding_dim input=Append(0, IfDefined(-1))
fast-lstmp-layer name=lstm1 cell-dim=$embedding_dim recurrent-projection-dim=$lstm_rpd non-recurrent-projection-dim=$lstm_nrpd
relu-renorm-layer name=tdnn2 dim=$embedding_dim input=Append(0, IfDefined(-2))
fast-lstmp-layer name=lstm2 cell-dim=$embedding_dim recurrent-projection-dim=$lstm_rpd non-recurrent-projection-dim=$lstm_nrpd
relu-renorm-layer name=tdnn3 dim=$embedding_dim input=Append(0, IfDefined(-1))
output-layer name=output include-log-softmax=false dim=$embedding_dim
EOF
rnnlm/validate_config_dir.sh $text_dir $dir/config
if [ $stage -le 2 ]; then
# the --unigram-factor option is set larger than the default (100)
# in order to reduce the size of the sampling LM, because rnnlm-get-egs
# was taking up too much CPU (as much as 10 cores).
rnnlm/prepare_rnnlm_dir.sh --unigram-factor 200.0 \
$text_dir $dir/config $dir
fi
if [ $stage -le 3 ]; then
rnnlm/train_rnnlm.sh --num-jobs-initial 1 --num-jobs-final 1 \
--stage $train_stage --num-epochs $epochs \
--cmd "queue.pl" $dir
fi
if [ $stage -le 4 ] && $run_lat_rescore; then
echo "$0: Perform lattice-rescoring on $ac_model_dir"
pruned=
if $pruned_rescore; then
pruned=_pruned
fi
for decode_set in dev test; do
decode_dir=${ac_model_dir}/decode_looped_${decode_set}_rescore
# Lattice rescoring
rnnlm/lmrescore$pruned.sh \
--cmd "$decode_cmd --mem 4G" \
--weight 0.5 --max-ngram-order $ngram_order \
data/lang $dir \
data/${decode_set}_hires ${decode_dir} \
exp/decode_looped_${decode_set}_${decode_dir_suffix}_rescore
done
fi
if [ $stage -le 5 ] && $run_nbest_rescore; then
echo "$0: Perform nbest-rescoring on $ac_model_dir"
for decode_set in dev test; do
decode_dir=${ac_model_dir}/decode_looped_${decode_set}_rescore
# nbest rescoring
rnnlm/lmrescore_nbest.sh \
--cmd "$decode_cmd --mem 4G" --N 20 \
0.8 data/lang $dir \
data/${decode_set}_hires ${decode_dir} \
exp/decode_looped_${decode_set}_${decode_dir_suffix}_nbest_rescore
done
fi
exit 0