Blame view
egs/wsj/s5/local/nnet2/run_6c_gpu.sh
2.51 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
#!/bin/bash # This script demonstrates discriminative training of neural nets. It's on top # of run_5c_gpu.sh, which uses adapted 40-dimensional features. This version of # the script uses GPUs. We distinguish it by putting "_gpu" at the end of the # directory name. gpu_opts="--gpu 1" # This is suitable for the CLSP network, # you'll likely have to change it. we'll # use it later on, in the training (it's # not used in denlat creation) . ./cmd.sh . ./path.sh ! cuda-compiled && cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF # The denominator lattice creation currently doesn't use GPUs. # Note: we specify 1G for --mem, which is per # thread... it will likely be less than the default. Increase the beam relative # to the defaults; this is just for this RM setup, where the default beams will # likely generate very thin lattices. Note: the transform-dir is important to # specify, since this system is on top of fMLLR features. set -e # exit on error. nj=$(cat exp/tri4b_ali_si284/num_jobs) steps/nnet2/make_denlats.sh --cmd "$decode_cmd --mem 1G" \ --nj $nj --sub-split 20 --num-threads 6 --parallel-opts "--num-threads 6" \ --transform-dir exp/tri4b_ali_si284 \ data/train_si284 data/lang exp/nnet5c_gpu exp/nnet5c_gpu_denlats steps/nnet2/align.sh --cmd "$decode_cmd $gpu_opts" \ --use-gpu yes --transform-dir exp/tri4b_ali_si284 \ --nj $nj data/train_si284 data/lang exp/nnet5c_gpu exp/nnet5c_gpu_ali steps/nnet2/train_discriminative.sh --cmd "$decode_cmd" --learning-rate 0.000002 \ --num-jobs-nnet 4 --transform-dir exp/tri4b_ali_si284 \ --num-threads 1 --parallel-opts "$gpu_opts" data/train_si284 data/lang \ exp/nnet5c_gpu_ali exp/nnet5c_gpu_denlats exp/nnet5c_gpu/final.mdl exp/nnet6c_mpe_gpu for epoch in 1 2 3 4; do dir=exp/nnet6c_mpe_gpu steps/nnet2/decode.sh --cmd "$decode_cmd" --nj 10 --iter epoch$epoch \ --transform-dir exp/tri4b/decode_bd_tgpr_dev93 \ exp/tri4b/graph_bd_tgpr data/test_dev93 $dir/decode_bd_tgpr_dev93_epoch$epoch & steps/nnet2/decode.sh --cmd "$decode_cmd" --nj 8 --iter epoch$epoch \ --transform-dir exp/tri4b/decode_bd_tgpr_eval92 \ exp/tri4b/graph_bd_tgpr data/test_eval92 $dir/decode_bd_tgpr_eval92_epoch$epoch & done exit 0; |