run_6c_gpu.sh
2.51 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
#!/bin/bash
# This script demonstrates discriminative training of neural nets. It's on top
# of run_5c_gpu.sh, which uses adapted 40-dimensional features. This version of
# the script uses GPUs. We distinguish it by putting "_gpu" at the end of the
# directory name.
gpu_opts="--gpu 1" # This is suitable for the CLSP network,
# you'll likely have to change it. we'll
# use it later on, in the training (it's
# not used in denlat creation)
. ./cmd.sh
. ./path.sh
! cuda-compiled && cat <<EOF && exit 1
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
If you want to use GPUs (and have them), go to src/, and configure and make on a machine
where "nvcc" is installed.
EOF
# The denominator lattice creation currently doesn't use GPUs.
# Note: we specify 1G for --mem, which is per
# thread... it will likely be less than the default. Increase the beam relative
# to the defaults; this is just for this RM setup, where the default beams will
# likely generate very thin lattices. Note: the transform-dir is important to
# specify, since this system is on top of fMLLR features.
set -e # exit on error.
nj=$(cat exp/tri4b_ali_si284/num_jobs)
steps/nnet2/make_denlats.sh --cmd "$decode_cmd --mem 1G" \
--nj $nj --sub-split 20 --num-threads 6 --parallel-opts "--num-threads 6" \
--transform-dir exp/tri4b_ali_si284 \
data/train_si284 data/lang exp/nnet5c_gpu exp/nnet5c_gpu_denlats
steps/nnet2/align.sh --cmd "$decode_cmd $gpu_opts" \
--use-gpu yes --transform-dir exp/tri4b_ali_si284 \
--nj $nj data/train_si284 data/lang exp/nnet5c_gpu exp/nnet5c_gpu_ali
steps/nnet2/train_discriminative.sh --cmd "$decode_cmd" --learning-rate 0.000002 \
--num-jobs-nnet 4 --transform-dir exp/tri4b_ali_si284 \
--num-threads 1 --parallel-opts "$gpu_opts" data/train_si284 data/lang \
exp/nnet5c_gpu_ali exp/nnet5c_gpu_denlats exp/nnet5c_gpu/final.mdl exp/nnet6c_mpe_gpu
for epoch in 1 2 3 4; do
dir=exp/nnet6c_mpe_gpu
steps/nnet2/decode.sh --cmd "$decode_cmd" --nj 10 --iter epoch$epoch \
--transform-dir exp/tri4b/decode_bd_tgpr_dev93 \
exp/tri4b/graph_bd_tgpr data/test_dev93 $dir/decode_bd_tgpr_dev93_epoch$epoch &
steps/nnet2/decode.sh --cmd "$decode_cmd" --nj 8 --iter epoch$epoch \
--transform-dir exp/tri4b/decode_bd_tgpr_eval92 \
exp/tri4b/graph_bd_tgpr data/test_eval92 $dir/decode_bd_tgpr_eval92_epoch$epoch &
done
exit 0;