Blame view
egs/wsj/s5/steps/cleanup/clean_and_segment_data_nnet3.sh
10.7 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
#!/bin/bash # Copyright 2016 Vimal Manohar # 2016 Johns Hopkins University (author: Daniel Povey) # Apache 2.0 # This script demonstrates how to re-segment training data selecting only the # "good" audio that matches the transcripts. # This script is like clean_and_segment_data.sh, but uses nnet3 model instead of # a GMM for decoding. # The basic idea is to decode with an existing in-domain nnet3 acoustic model, # and a biased language model built from the reference transcript, and then work # out the segmentation from a ctm like file. set -e set -o pipefail set -u stage=0 cmd=run.pl cleanup=true # remove temporary directories and files nj=4 # Decode options graph_opts= scale_opts= beam=15.0 lattice_beam=1.0 acwt=0.1 # Just a default value, used for adaptation and beam-pruning.. lmwt=10 # Contexts must ideally match training extra_left_context=0 # Set to some large value, typically 40 for LSTM (must match training) extra_right_context=0 extra_left_context_initial=-1 extra_right_context_final=-1 frames_per_chunk=150 # i-vector options extractor= # i-Vector extractor. If provided, will extract i-vectors. # Required if the network was trained with i-vector extractor. use_vad=false # Use energy-based VAD for i-vector extraction segmentation_opts= . ./path.sh . utils/parse_options.sh if [ $# -ne 5 ]; then cat <<EOF Usage: $0 [--extractor <ivector-extractor>] [options] <data> <lang> <srcdir> <dir> <cleaned-data> This script does data cleanup to remove bad portions of transcripts and may do other minor modifications of transcripts such as allowing repetitions for disfluencies, and adding or removing non-scored words (by default: words that map to 'silence phones') Note: <srcdir> is expected to contain a nnet3-based model. <ivector-extractor> and decoding options like --extra-left-context must match the appropriate options used for training. e.g. $0 data/train data/lang exp/tri3 exp/tri3_cleanup data/train_cleaned main options (for others, see top of script file): --stage <n> # stage to run from, to enable resuming from partially # completed run (default: 0) --cmd '$cmd' # command to submit jobs with (e.g. run.pl, queue.pl) --nj <n> # number of parallel jobs to use in graph creation and # decoding --graph-opts 'opts' # Additional options to make_biased_lm_graphs.sh. # Please run steps/cleanup/make_biased_lm_graphs.sh # without arguments to see allowed options. --segmentation-opts 'opts' # Additional options to segment_ctm_edits.py. # Please run steps/cleanup/internal/segment_ctm_edits.py # without arguments to see allowed options. --cleanup <true|false> # Clean up intermediate files afterward. Default true. --extractor <extractor> # i-vector extractor directory if i-vector is # to be used during decoding. Must match # the extractor used for training neural-network. --use-vad <true|false> # If true, uses energy-based VAD to apply frame weights # for i-vector stats extraction EOF exit 1 fi data=$1 lang=$2 srcdir=$3 dir=$4 data_out=$5 extra_files= if [ ! -z "$extractor" ]; then extra_files="$extractor/final.ie" fi for f in $srcdir/{final.mdl,tree,cmvn_opts} $data/utt2spk $data/feats.scp \ $lang/words.txt $lang/oov.txt $extra_files; do if [ ! -f $f ]; then echo "$0: expected file $f to exist." exit 1 fi done mkdir -p $dir cp $srcdir/final.mdl $dir cp $srcdir/tree $dir cp $srcdir/cmvn_opts $dir cp $srcdir/{splice_opts,delta_opts,final.mat,final.alimdl} $dir 2>/dev/null || true cp $srcdir/frame_subsampling_factor $dir 2>/dev/null || true if [ -f $srcdir/frame_subsampling_factor ]; then echo "$0: guessing that this is a chain system, checking parameters." if [ -z $scale_opts ]; then echo "$0: setting scale_opts" scale_opts="--self-loop-scale=1.0 --transition-scale=1.0" fi if [ $acwt == 0.1 ]; then echo "$0: setting acwt=1.0" acwt=1.0 fi if [ $lmwt == 10 ]; then echo "$0: setting lmwt=1.0" lmwt=1 fi fi utils/lang/check_phones_compatible.sh $lang/phones.txt $srcdir/phones.txt cp $lang/phones.txt $dir if [ $stage -le 1 ]; then echo "$0: Building biased-language-model decoding graphs..." steps/cleanup/make_biased_lm_graphs.sh $graph_opts \ --nj $nj --cmd "$cmd" \ $data $lang $dir $dir/graphs fi online_ivector_dir= if [ ! -z "$extractor" ]; then online_ivector_dir=$dir/ivectors_$(basename $data) if [ $stage -le 2 ]; then # Compute energy-based VAD if $use_vad; then steps/compute_vad_decision.sh $data \ $data/log $data/data fi steps/online/nnet2/extract_ivectors_online.sh \ --nj $nj --cmd "$cmd --mem 4G" --use-vad $use_vad \ $data $extractor $online_ivector_dir fi fi if [ $stage -le 3 ]; then echo "$0: Decoding with biased language models..." steps/cleanup/decode_segmentation_nnet3.sh \ --acwt $acwt \ --beam $beam --lattice-beam $lattice_beam --nj $nj --cmd "$cmd --mem 4G" \ --skip-scoring true --allow-partial false \ --extra-left-context $extra_left_context \ --extra-right-context $extra_right_context \ --extra-left-context-initial $extra_left_context_initial \ --extra-right-context-final $extra_right_context_final \ --frames-per-chunk $frames_per_chunk \ ${online_ivector_dir:+--online-ivector-dir $online_ivector_dir} \ $dir/graphs $data $dir/lats # the following is for diagnostics, e.g. it will give us the lattice depth. steps/diagnostic/analyze_lats.sh --cmd "$cmd" $lang $dir/lats fi frame_shift_opt= if [ -f $srcdir/frame_subsampling_factor ]; then frame_shift_opt="--frame-shift 0.0$(cat $srcdir/frame_subsampling_factor)" fi if [ $stage -le 4 ]; then echo "$0: Doing oracle alignment of lattices..." steps/cleanup/lattice_oracle_align.sh --cmd "$cmd --mem 4G" $frame_shift_opt \ $data $lang $dir/lats $dir/lattice_oracle fi if [ $stage -le 4 ]; then echo "$0: using default values of non-scored words..." # At the level of this script we just hard-code it that non-scored words are # those that map to silence phones (which is what get_non_scored_words.py # gives us), although this could easily be made user-configurable. This list # of non-scored words affects the behavior of several of the data-cleanup # scripts; essentially, we view the non-scored words as negotiable when it # comes to the reference transcript, so we'll consider changing the reference # to match the hyp when it comes to these words. steps/cleanup/internal/get_non_scored_words.py $lang > $dir/non_scored_words.txt fi if [ $stage -le 5 ]; then echo "$0: modifying ctm-edits file to allow repetitions [for dysfluencies] and " echo " ... to fix reference mismatches involving non-scored words. " $cmd $dir/log/modify_ctm_edits.log \ steps/cleanup/internal/modify_ctm_edits.py --verbose=3 $dir/non_scored_words.txt \ $dir/lattice_oracle/ctm_edits $dir/ctm_edits.modified echo " ... See $dir/log/modify_ctm_edits.log for details and stats, including" echo " a list of commonly-repeated words." fi if [ $stage -le 6 ]; then echo "$0: applying 'taint' markers to ctm-edits file to mark silences and" echo " ... non-scored words that are next to errors." $cmd $dir/log/taint_ctm_edits.log \ steps/cleanup/internal/taint_ctm_edits.py $dir/ctm_edits.modified $dir/ctm_edits.tainted echo "... Stats, including global cor/ins/del/sub stats, are in $dir/log/taint_ctm_edits.log." fi if [ $stage -le 7 ]; then echo "$0: creating segmentation from ctm-edits file." $cmd $dir/log/segment_ctm_edits.log \ steps/cleanup/internal/segment_ctm_edits.py \ $segmentation_opts \ --oov-symbol-file=$lang/oov.txt \ --ctm-edits-out=$dir/ctm_edits.segmented \ --word-stats-out=$dir/word_stats.txt \ $dir/non_scored_words.txt \ $dir/ctm_edits.tainted $dir/text $dir/segments echo "$0: contents of $dir/log/segment_ctm_edits.log are:" cat $dir/log/segment_ctm_edits.log echo "For word-level statistics on p(not-being-in-a-segment), with 'worst' words at the top," echo "see $dir/word_stats.txt" echo "For detailed utterance-level debugging information, see $dir/ctm_edits.segmented" fi if [ $stage -le 8 ]; then echo "$0: working out required segment padding to account for feature-generation edge effects." # make sure $data/utt2dur exists. utils/data/get_utt2dur.sh $data # utt2dur.from_ctm contains lines of the form 'utt dur', e.g. # AMI_EN2001a_H00_MEE068_0000557_0000594 0.35 # where the times are ultimately derived from the num-frames in the features. cat $dir/lattice_oracle/ctm_edits | \ awk '{utt=$1; t=$3+$4; if (t > dur[$1]) dur[$1] = t; } END{for (k in dur) print k, dur[k];}' | \ sort > $dir/utt2dur.from_ctm # the apply_map command below gives us lines of the form 'utt dur-from-$data/utt2dur dur-from-utt2dur.from_ctm', # e.g. AMI_EN2001a_H00_MEE068_0000557_0000594 0.37 0.35 utils/apply_map.pl -f 1 <(awk '{print $1,$1,$2}' <$data/utt2dur) <$dir/utt2dur.from_ctm | \ awk '{printf("%.3f ", $2 - $3); }' | sort | uniq -c | sort -nr > $dir/padding_frequencies # there are values other than the most-frequent one (0.02) in there because # of wav files that were shorter than the segment info. padding=$(head -n 1 $dir/padding_frequencies | awk '{print $2}') echo "$0: we'll pad segments with $padding seconds at segment ends to correct for feature-generation end effects" echo $padding >$dir/segment_end_padding fi if [ $stage -le 8 ]; then echo "$0: based on the segments and text file in $dir/segments and $dir/text, creating new data-dir in $data_out" padding=$(cat $dir/segment_end_padding) # e.g. 0.02 utils/data/subsegment_data_dir.sh --segment-end-padding $padding ${data} $dir/segments $dir/text $data_out # utils/data/subsegment_data_dir.sh can output directories that have e.g. to many entries left in wav.scp # Clean this up with the fix_dat_dir.sh script utils/fix_data_dir.sh $data_out fi if [ $stage -le 9 ]; then echo "$0: recomputing CMVN stats for the new data" # Caution: this script puts the CMVN stats in $data_out/data, # e.g. data/train_cleaned/data. This is not the general pattern we use. steps/compute_cmvn_stats.sh $data_out $data_out/log $data_out/data fi if $cleanup; then echo "$0: cleaning up intermediate files" rm -r $dir/graphs/fsts $dir/graphs/HCLG.fsts.scp || true rm -r $dir/lats/lat.*.gz $dir/lats/split_fsts || true rm $dir/lattice_oracle/lat.*.gz || true fi echo "$0: done." |