clean_and_segment_data_nnet3.sh
10.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
#!/bin/bash
# Copyright 2016 Vimal Manohar
# 2016 Johns Hopkins University (author: Daniel Povey)
# Apache 2.0
# This script demonstrates how to re-segment training data selecting only the
# "good" audio that matches the transcripts.
# This script is like clean_and_segment_data.sh, but uses nnet3 model instead of
# a GMM for decoding.
# The basic idea is to decode with an existing in-domain nnet3 acoustic model,
# and a biased language model built from the reference transcript, and then work
# out the segmentation from a ctm like file.
set -e
set -o pipefail
set -u
stage=0
cmd=run.pl
cleanup=true # remove temporary directories and files
nj=4
# Decode options
graph_opts=
scale_opts=
beam=15.0
lattice_beam=1.0
acwt=0.1 # Just a default value, used for adaptation and beam-pruning..
lmwt=10
# Contexts must ideally match training
extra_left_context=0 # Set to some large value, typically 40 for LSTM (must match training)
extra_right_context=0
extra_left_context_initial=-1
extra_right_context_final=-1
frames_per_chunk=150
# i-vector options
extractor= # i-Vector extractor. If provided, will extract i-vectors.
# Required if the network was trained with i-vector extractor.
use_vad=false # Use energy-based VAD for i-vector extraction
segmentation_opts=
. ./path.sh
. utils/parse_options.sh
if [ $# -ne 5 ]; then
cat <<EOF
Usage: $0 [--extractor <ivector-extractor>] [options] <data> <lang> <srcdir> <dir> <cleaned-data>
This script does data cleanup to remove bad portions of transcripts and
may do other minor modifications of transcripts such as allowing repetitions
for disfluencies, and adding or removing non-scored words (by default:
words that map to 'silence phones')
Note: <srcdir> is expected to contain a nnet3-based model.
<ivector-extractor> and decoding options like --extra-left-context must match
the appropriate options used for training.
e.g. $0 data/train data/lang exp/tri3 exp/tri3_cleanup data/train_cleaned
main options (for others, see top of script file):
--stage <n> # stage to run from, to enable resuming from partially
# completed run (default: 0)
--cmd '$cmd' # command to submit jobs with (e.g. run.pl, queue.pl)
--nj <n> # number of parallel jobs to use in graph creation and
# decoding
--graph-opts 'opts' # Additional options to make_biased_lm_graphs.sh.
# Please run steps/cleanup/make_biased_lm_graphs.sh
# without arguments to see allowed options.
--segmentation-opts 'opts' # Additional options to segment_ctm_edits.py.
# Please run steps/cleanup/internal/segment_ctm_edits.py
# without arguments to see allowed options.
--cleanup <true|false> # Clean up intermediate files afterward. Default true.
--extractor <extractor> # i-vector extractor directory if i-vector is
# to be used during decoding. Must match
# the extractor used for training neural-network.
--use-vad <true|false> # If true, uses energy-based VAD to apply frame weights
# for i-vector stats extraction
EOF
exit 1
fi
data=$1
lang=$2
srcdir=$3
dir=$4
data_out=$5
extra_files=
if [ ! -z "$extractor" ]; then
extra_files="$extractor/final.ie"
fi
for f in $srcdir/{final.mdl,tree,cmvn_opts} $data/utt2spk $data/feats.scp \
$lang/words.txt $lang/oov.txt $extra_files; do
if [ ! -f $f ]; then
echo "$0: expected file $f to exist."
exit 1
fi
done
mkdir -p $dir
cp $srcdir/final.mdl $dir
cp $srcdir/tree $dir
cp $srcdir/cmvn_opts $dir
cp $srcdir/{splice_opts,delta_opts,final.mat,final.alimdl} $dir 2>/dev/null || true
cp $srcdir/frame_subsampling_factor $dir 2>/dev/null || true
if [ -f $srcdir/frame_subsampling_factor ]; then
echo "$0: guessing that this is a chain system, checking parameters."
if [ -z $scale_opts ]; then
echo "$0: setting scale_opts"
scale_opts="--self-loop-scale=1.0 --transition-scale=1.0"
fi
if [ $acwt == 0.1 ]; then
echo "$0: setting acwt=1.0"
acwt=1.0
fi
if [ $lmwt == 10 ]; then
echo "$0: setting lmwt=1.0"
lmwt=1
fi
fi
utils/lang/check_phones_compatible.sh $lang/phones.txt $srcdir/phones.txt
cp $lang/phones.txt $dir
if [ $stage -le 1 ]; then
echo "$0: Building biased-language-model decoding graphs..."
steps/cleanup/make_biased_lm_graphs.sh $graph_opts \
--nj $nj --cmd "$cmd" \
$data $lang $dir $dir/graphs
fi
online_ivector_dir=
if [ ! -z "$extractor" ]; then
online_ivector_dir=$dir/ivectors_$(basename $data)
if [ $stage -le 2 ]; then
# Compute energy-based VAD
if $use_vad; then
steps/compute_vad_decision.sh $data \
$data/log $data/data
fi
steps/online/nnet2/extract_ivectors_online.sh \
--nj $nj --cmd "$cmd --mem 4G" --use-vad $use_vad \
$data $extractor $online_ivector_dir
fi
fi
if [ $stage -le 3 ]; then
echo "$0: Decoding with biased language models..."
steps/cleanup/decode_segmentation_nnet3.sh \
--acwt $acwt \
--beam $beam --lattice-beam $lattice_beam --nj $nj --cmd "$cmd --mem 4G" \
--skip-scoring true --allow-partial false \
--extra-left-context $extra_left_context \
--extra-right-context $extra_right_context \
--extra-left-context-initial $extra_left_context_initial \
--extra-right-context-final $extra_right_context_final \
--frames-per-chunk $frames_per_chunk \
${online_ivector_dir:+--online-ivector-dir $online_ivector_dir} \
$dir/graphs $data $dir/lats
# the following is for diagnostics, e.g. it will give us the lattice depth.
steps/diagnostic/analyze_lats.sh --cmd "$cmd" $lang $dir/lats
fi
frame_shift_opt=
if [ -f $srcdir/frame_subsampling_factor ]; then
frame_shift_opt="--frame-shift 0.0$(cat $srcdir/frame_subsampling_factor)"
fi
if [ $stage -le 4 ]; then
echo "$0: Doing oracle alignment of lattices..."
steps/cleanup/lattice_oracle_align.sh --cmd "$cmd --mem 4G" $frame_shift_opt \
$data $lang $dir/lats $dir/lattice_oracle
fi
if [ $stage -le 4 ]; then
echo "$0: using default values of non-scored words..."
# At the level of this script we just hard-code it that non-scored words are
# those that map to silence phones (which is what get_non_scored_words.py
# gives us), although this could easily be made user-configurable. This list
# of non-scored words affects the behavior of several of the data-cleanup
# scripts; essentially, we view the non-scored words as negotiable when it
# comes to the reference transcript, so we'll consider changing the reference
# to match the hyp when it comes to these words.
steps/cleanup/internal/get_non_scored_words.py $lang > $dir/non_scored_words.txt
fi
if [ $stage -le 5 ]; then
echo "$0: modifying ctm-edits file to allow repetitions [for dysfluencies] and "
echo " ... to fix reference mismatches involving non-scored words. "
$cmd $dir/log/modify_ctm_edits.log \
steps/cleanup/internal/modify_ctm_edits.py --verbose=3 $dir/non_scored_words.txt \
$dir/lattice_oracle/ctm_edits $dir/ctm_edits.modified
echo " ... See $dir/log/modify_ctm_edits.log for details and stats, including"
echo " a list of commonly-repeated words."
fi
if [ $stage -le 6 ]; then
echo "$0: applying 'taint' markers to ctm-edits file to mark silences and"
echo " ... non-scored words that are next to errors."
$cmd $dir/log/taint_ctm_edits.log \
steps/cleanup/internal/taint_ctm_edits.py $dir/ctm_edits.modified $dir/ctm_edits.tainted
echo "... Stats, including global cor/ins/del/sub stats, are in $dir/log/taint_ctm_edits.log."
fi
if [ $stage -le 7 ]; then
echo "$0: creating segmentation from ctm-edits file."
$cmd $dir/log/segment_ctm_edits.log \
steps/cleanup/internal/segment_ctm_edits.py \
$segmentation_opts \
--oov-symbol-file=$lang/oov.txt \
--ctm-edits-out=$dir/ctm_edits.segmented \
--word-stats-out=$dir/word_stats.txt \
$dir/non_scored_words.txt \
$dir/ctm_edits.tainted $dir/text $dir/segments
echo "$0: contents of $dir/log/segment_ctm_edits.log are:"
cat $dir/log/segment_ctm_edits.log
echo "For word-level statistics on p(not-being-in-a-segment), with 'worst' words at the top,"
echo "see $dir/word_stats.txt"
echo "For detailed utterance-level debugging information, see $dir/ctm_edits.segmented"
fi
if [ $stage -le 8 ]; then
echo "$0: working out required segment padding to account for feature-generation edge effects."
# make sure $data/utt2dur exists.
utils/data/get_utt2dur.sh $data
# utt2dur.from_ctm contains lines of the form 'utt dur', e.g.
# AMI_EN2001a_H00_MEE068_0000557_0000594 0.35
# where the times are ultimately derived from the num-frames in the features.
cat $dir/lattice_oracle/ctm_edits | \
awk '{utt=$1; t=$3+$4; if (t > dur[$1]) dur[$1] = t; } END{for (k in dur) print k, dur[k];}' | \
sort > $dir/utt2dur.from_ctm
# the apply_map command below gives us lines of the form 'utt dur-from-$data/utt2dur dur-from-utt2dur.from_ctm',
# e.g. AMI_EN2001a_H00_MEE068_0000557_0000594 0.37 0.35
utils/apply_map.pl -f 1 <(awk '{print $1,$1,$2}' <$data/utt2dur) <$dir/utt2dur.from_ctm | \
awk '{printf("%.3f\n", $2 - $3); }' | sort | uniq -c | sort -nr > $dir/padding_frequencies
# there are values other than the most-frequent one (0.02) in there because
# of wav files that were shorter than the segment info.
padding=$(head -n 1 $dir/padding_frequencies | awk '{print $2}')
echo "$0: we'll pad segments with $padding seconds at segment ends to correct for feature-generation end effects"
echo $padding >$dir/segment_end_padding
fi
if [ $stage -le 8 ]; then
echo "$0: based on the segments and text file in $dir/segments and $dir/text, creating new data-dir in $data_out"
padding=$(cat $dir/segment_end_padding) # e.g. 0.02
utils/data/subsegment_data_dir.sh --segment-end-padding $padding ${data} $dir/segments $dir/text $data_out
# utils/data/subsegment_data_dir.sh can output directories that have e.g. to many entries left in wav.scp
# Clean this up with the fix_dat_dir.sh script
utils/fix_data_dir.sh $data_out
fi
if [ $stage -le 9 ]; then
echo "$0: recomputing CMVN stats for the new data"
# Caution: this script puts the CMVN stats in $data_out/data,
# e.g. data/train_cleaned/data. This is not the general pattern we use.
steps/compute_cmvn_stats.sh $data_out $data_out/log $data_out/data
fi
if $cleanup; then
echo "$0: cleaning up intermediate files"
rm -r $dir/graphs/fsts $dir/graphs/HCLG.fsts.scp || true
rm -r $dir/lats/lat.*.gz $dir/lats/split_fsts || true
rm $dir/lattice_oracle/lat.*.gz || true
fi
echo "$0: done."