Blame view
egs/wsj/s5/steps/cleanup/segment_long_utterances.sh
17 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
#!/bin/bash # Copyright 2014 Guoguo Chen # 2016 Vimal Manohar # Apache 2.0 # This script performs segmentation of the input data based on the transcription # and outputs segmented data along with the corresponding aligned transcription. # The purpose of this script is to divide up the input data (which may consist # of long recordings such as television shows or audiobooks) into segments which # are of manageable length for further processing, along with the portion of the # transcript that seems to match (aligns with) each segment. # This the light-supervised training scenario where the input transcription is # not expected to be completely clean and may have significant errors. # See "JHU Kaldi System for Arabic MGB-3 ASR Challenge using Diarization, # Audio-transcript Alignment and Transfer Learning": Vimal Manohar, Daniel # Povey, Sanjeev Khudanpur, ASRU 2017 # (http://www.danielpovey.com/files/2017_asru_mgb3.pdf) for details. # The output data is not necessarily particularly clean; you can run # steps/cleanup/clean_and_segment_data.sh on the output in order to # further clean it and eliminate data where the transcript doesn't seem to # match. . ./path.sh set -e set -o pipefail set -u # Uniform segmentation options max_segment_duration=30 overlap_duration=5 seconds_per_spk_max=30 # Decode options graph_opts= beam=15.0 lattice_beam=1.0 nj=4 lmwt=10 # TF-IDF similarity search options max_words=1000 num_neighbors_to_search=1 # Number of neighboring documents to search around the one retrieved based on maximum tf-idf similarity. neighbor_tfidf_threshold=0.5 align_full_hyp=false # Align full hypothesis i.e. trackback from the end to get the alignment. # First-pass segmentation opts # These options are passed to the script # steps/cleanup/internal/segment_ctm_edits_mild.py segmentation_extra_opts= min_split_point_duration=0.1 max_deleted_words_kept_when_merging=1 max_wer=50 max_segment_length_for_merging=60 max_bad_proportion=0.75 max_intersegment_incorrect_words_length=1 max_segment_length_for_splitting=10 hard_max_segment_length=15 min_silence_length_to_split_at=0.3 min_non_scored_length_to_split_at=0.3 stage=-1 cmd=run.pl . utils/parse_options.sh if [ $# -ne 5 ] && [ $# -ne 7 ]; then cat <<EOF Usage: $0 [options] <model-dir> <lang> <data-in> [<text-in> <utt2text>] <segmented-data-out> <work-dir> e.g.: $0 exp/wsj_tri2b data/lang_nosp data/train_long data/train_long/text data/train_reseg exp/segment_wsj_long_utts_train This script performs segmentation of the data in <data-in> and writes out the segmented data (with a segments file) to <segmented-data-out> along with the corresponding aligned transcription. Note: If <utt2text> is not provided, the "text" file in <data-in> is used as the raw transcripts to train biased LM for the utterances. If <utt2text> is provided, then it should be a mapping from the utterance-ids in <data-in> to the transcript-keys in the file <text-in>, which will be used to train biased LMs for the utterances. The purpose of this script is to divide up the input data (which may consist of long recordings such as television shows or audiobooks) into segments which are of manageable length for further processing, along with the portion of the transcript that seems to match each segment. The output data is not necessarily particularly clean; you are advised to run steps/cleanup/clean_and_segment_data.sh on the output in order to further clean it and eliminate data where the transcript doesn't seem to match. EOF exit 1 fi srcdir=$1 lang=$2 data=$3 extra_files= utt2text= text=$data/text if [ $# -eq 7 ]; then text=$4 utt2text=$5 out_data=$6 dir=$7 extra_files="$utt2text" else out_data=$4 dir=$5 fi for f in $data/feats.scp $text $extra_files $srcdir/tree \ $srcdir/final.mdl $srcdir/cmvn_opts; do if [ ! -f $f ]; then echo "$0: Could not find file $f" exit 1 fi done data_id=`basename $data` mkdir -p $dir data_uniform_seg=$dir/${data_id}_uniform_seg frame_shift=`utils/data/get_frame_shift.sh $data` # First we split the data into segments of around 30s long, on which # it would be possible to do a decoding. # A diarization step will be added in the future. if [ $stage -le 1 ]; then echo "$0: Stage 1 (Splitting data directory $data into uniform segments)" utils/data/get_utt2dur.sh $data if [ ! -f $data/segments ]; then utils/data/get_segments_for_data.sh $data > $data/segments fi utils/data/get_uniform_subsegments.py \ --max-segment-duration=$max_segment_duration \ --overlap-duration=$overlap_duration \ --max-remaining-duration=$(perl -e "print $max_segment_duration / 2.0") \ $data/segments > $dir/uniform_sub_segments fi if [ $stage -le 2 ]; then echo "$0: Stage 2 (Prepare uniform sub-segmented data directory)" rm -r $data_uniform_seg || true if [ ! -z "$seconds_per_spk_max" ]; then utils/data/subsegment_data_dir.sh \ $data $dir/uniform_sub_segments $dir/${data_id}_uniform_seg.temp utils/data/modify_speaker_info.sh --seconds-per-spk-max $seconds_per_spk_max \ $dir/${data_id}_uniform_seg.temp $data_uniform_seg else utils/data/subsegment_data_dir.sh \ $data $dir/uniform_sub_segments $data_uniform_seg fi utils/fix_data_dir.sh $data_uniform_seg # Compute new cmvn stats for the segmented data directory steps/compute_cmvn_stats.sh $data_uniform_seg/ fi graph_dir=$dir/graphs_uniform_seg if [ $stage -le 3 ]; then echo "$0: Stage 3 (Building biased-language-model decoding graphs)" cp $srcdir/final.mdl $dir cp $srcdir/tree $dir cp $srcdir/cmvn_opts $dir cp $srcdir/{splice_opts,delta_opts,final.mat,final.alimdl} $dir 2>/dev/null || true cp $srcdir/phones.txt $dir 2>/dev/null || true mkdir -p $graph_dir n_reco=$(cat $text | wc -l) || exit 1 nj_reco=$nj if [ $nj -gt $n_reco ]; then nj_reco=$n_reco fi # Make graphs w.r.t. to the original text (usually recording-level) steps/cleanup/make_biased_lm_graphs.sh $graph_opts \ --nj $nj_reco --cmd "$cmd" $text \ $lang $dir $dir/graphs if [ -z "$utt2text" ]; then # and then copy it to the sub-segments. cat $dir/uniform_sub_segments | awk '{print $1" "$2}' | \ utils/apply_map.pl -f 2 $dir/graphs/HCLG.fsts.scp | \ sort -k1,1 > \ $graph_dir/HCLG.fsts.scp else # and then copy it to the sub-segments. cat $dir/uniform_sub_segments | awk '{print $1" "$2}' | \ utils/apply_map.pl -f 2 $utt2text | \ utils/apply_map.pl -f 2 $dir/graphs/HCLG.fsts.scp | \ sort -k1,1 > \ $graph_dir/HCLG.fsts.scp fi cp $lang/words.txt $graph_dir cp -r $lang/phones $graph_dir [ -f $dir/graphs/num_pdfs ] && cp $dir/graphs/num_pdfs $graph_dir/ fi decode_dir=$dir/lats mkdir -p $decode_dir if [ $stage -le 4 ]; then echo "$0: Decoding with biased language models..." if [ -f $srcdir/trans.1 ]; then steps/cleanup/decode_fmllr_segmentation.sh \ --beam $beam --lattice-beam $lattice_beam --nj $nj --cmd "$cmd --mem 4G" \ --skip-scoring true --allow-partial false \ $graph_dir $data_uniform_seg $decode_dir else steps/cleanup/decode_segmentation.sh \ --beam $beam --lattice-beam $lattice_beam --nj $nj --cmd "$cmd --mem 4G" \ --skip-scoring true --allow-partial false \ $graph_dir $data_uniform_seg $decode_dir fi fi if [ $stage -le 5 ]; then steps/get_ctm_fast.sh --frame_shift $frame_shift --lmwt $lmwt --cmd "$cmd --mem 4G" \ --print-silence true \ $data_uniform_seg $lang $decode_dir $decode_dir/ctm_$lmwt fi # Split the original text into documents, over which we can do # searching reasonably efficiently. Also get a mapping from the original # text to the created documents (i.e. text2doc) # Since the Smith-Waterman alignment is linear in the length of the # text, we want to keep it reasonably small (a few thousand words). if [ $stage -le 6 ]; then # Split the reference text into documents. mkdir -p $dir/docs # text2doc is a mapping from the original transcript to the documents # it is split into. # The format is # <original-transcript> <doc1> <doc2> ... steps/cleanup/internal/split_text_into_docs.pl --max-words $max_words \ $text $dir/docs/doc2text $dir/docs/docs.txt utils/utt2spk_to_spk2utt.pl $dir/docs/doc2text > $dir/docs/text2doc fi if [ $stage -le 7 ]; then # Get TF-IDF for the reference documents. echo $nj > $dir/docs/num_jobs utils/split_data.sh $data_uniform_seg $nj mkdir -p $dir/docs/split$nj/ # First compute IDF stats $cmd $dir/log/compute_source_idf_stats.log \ steps/cleanup/internal/compute_tf_idf.py \ --tf-weighting-scheme="raw" \ --idf-weighting-scheme="log" \ --output-idf-stats=$dir/docs/idf_stats.txt \ $dir/docs/docs.txt $dir/docs/src_tf_idf.txt # Split documents so that they can be accessed easily by parallel jobs. mkdir -p $dir/docs/split$nj/ sdir=$dir/docs/split$nj for n in `seq $nj`; do # old2new_utts is a mapping from the original segments to the # new segments created by uniformly segmenting. # The format is <old-utterance> <new-utt1> <new-utt2> ... utils/filter_scp.pl $data_uniform_seg/split$nj/$n/utt2spk $dir/uniform_sub_segments | \ cut -d ' ' -f 1,2 | utils/utt2spk_to_spk2utt.pl > $sdir/old2new_utts.$n.txt if [ ! -z "$utt2text" ]; then # utt2text, if provided, is a mapping from the <old-utterance> to # <original-transript>. # Since text2doc is mapping from <original-transcript> to documents, we # first have to find the original-transcripts that are in the current # split. utils/filter_scp.pl $sdir/old2new_utts.$n.txt $utt2text | \ cut -d ' ' -f 2 | sort -u | \ utils/filter_scp.pl /dev/stdin $dir/docs/text2doc > $sdir/text2doc.$n else utils/filter_scp.pl $sdir/old2new_utts.$n.txt \ $dir/docs/text2doc > $sdir/text2doc.$n fi utils/spk2utt_to_utt2spk.pl $sdir/text2doc.$n | \ utils/filter_scp.pl /dev/stdin $dir/docs/docs.txt > \ $sdir/docs.$n.txt done # Compute TF-IDF for the source documents. $cmd JOB=1:$nj $dir/docs/log/get_tfidf_for_source_texts.JOB.log \ steps/cleanup/internal/compute_tf_idf.py \ --tf-weighting-scheme="raw" \ --idf-weighting-scheme="log" \ --input-idf-stats=$dir/docs/idf_stats.txt \ $sdir/docs.JOB.txt $sdir/src_tf_idf.JOB.txt sdir=$dir/docs/split$nj # Make $sdir an absolute pathname. sdir=`perl -e '($dir,$pwd)= @ARGV; if($dir!~m:^/:) { $dir = "$pwd/$dir"; } print $dir; ' $sdir ${PWD}` for n in `seq $nj`; do awk -v f="$sdir/src_tf_idf.$n.txt" '{print $1" "f}' \ $sdir/text2doc.$n done | perl -ane 'BEGIN { %tfidfs = (); } { if (!defined $tfidfs{$F[0]}) { $tfidfs{$F[0]} = $F[1]; } } END { while(my ($k, $v) = each %tfidfs) { print "$k $v "; } }' > $dir/docs/source2tf_idf.scp fi if [ $stage -le 8 ]; then echo "$0: using default values of non-scored words..." # At the level of this script we just hard-code it that non-scored words are # those that map to silence phones (which is what get_non_scored_words.py # gives us), although this could easily be made user-configurable. This list # of non-scored words affects the behavior of several of the data-cleanup # scripts; essentially, we view the non-scored words as negotiable when it # comes to the reference transcript, so we'll consider changing the reference # to match the hyp when it comes to these words. steps/cleanup/internal/get_non_scored_words.py $lang > $dir/non_scored_words.txt fi if [ $stage -le 9 ]; then sdir=$dir/query_docs/split$nj mkdir -p $sdir # Compute TF-IDF for the query documents (decode hypotheses). # The output is an archive of TF-IDF indexed by the query. $cmd JOB=1:$nj $decode_dir/ctm_$lmwt/log/compute_query_tf_idf.JOB.log \ steps/cleanup/internal/ctm_to_text.pl --non-scored-words $dir/non_scored_words.txt \ $decode_dir/ctm_$lmwt/ctm.JOB \| \ steps/cleanup/internal/compute_tf_idf.py \ --tf-weighting-scheme="normalized" \ --idf-weighting-scheme="log" \ --input-idf-stats=$dir/docs/idf_stats.txt \ --accumulate-over-docs=false \ - $sdir/query_tf_idf.JOB.ark.txt # The relevant documents can be found using TF-IDF similarity and nearby # documents can also be picked for the Smith-Waterman alignment stage. # Get a mapping from the new utterance-ids to original transcripts if [ -z "$utt2text" ]; then awk '{print $1" "$2}' $dir/uniform_sub_segments > \ $dir/new2orig_utt else awk '{print $1" "$2}' $dir/uniform_sub_segments | \ utils/apply_map.pl -f 2 $utt2text > \ $dir/new2orig_utt fi # The query TF-IDFs are all indexed by the utterance-id of the sub-segments. # The source TF-IDFs use the document-ids created by splitting the reference # text into documents. # For each query, we need to retrieve the documents that were created from # the same original utterance that the sub-segment was from. For this, # we have to load the source TF-IDF that has those documents. This # information is provided using the option --source-text-id2tf-idf-file. # The output of this script is a file where the first column is the # query-id (i.e. sub-segment-id) and the remaining columns, which is at least # one in number and a maxmium of (1 + 2 * num-neighbors-to-search) columns # is the document-ids for the retrieved documents. $cmd JOB=1:$nj $dir/log/retrieve_similar_docs.JOB.log \ steps/cleanup/internal/retrieve_similar_docs.py \ --query-tfidf=$dir/query_docs/split$nj/query_tf_idf.JOB.ark.txt \ --source-text-id2tfidf=$dir/docs/source2tf_idf.scp \ --source-text-id2doc-ids=$dir/docs/text2doc \ --query-id2source-text-id=$dir/new2orig_utt \ --num-neighbors-to-search=$num_neighbors_to_search \ --neighbor-tfidf-threshold=$neighbor_tfidf_threshold \ --relevant-docs=$dir/query_docs/split$nj/relevant_docs.JOB.txt $cmd JOB=1:$nj $decode_dir/ctm_$lmwt/log/get_ctm_edits.JOB.log \ steps/cleanup/internal/stitch_documents.py \ --query2docs=$dir/query_docs/split$nj/relevant_docs.JOB.txt \ --input-documents=$dir/docs/split$nj/docs.JOB.txt \ --output-documents=- \| \ steps/cleanup/internal/align_ctm_ref.py --eps-symbol='"<eps>"' \ --oov-word="'`cat $lang/oov.txt`'" --symbol-table=$lang/words.txt \ --hyp-format=CTM --align-full-hyp=$align_full_hyp \ --hyp=$decode_dir/ctm_$lmwt/ctm.JOB --ref=- \ --output=$decode_dir/ctm_$lmwt/ctm_edits.JOB for n in `seq $nj`; do cat $decode_dir/ctm_$lmwt/ctm_edits.$n done > $decode_dir/ctm_$lmwt/ctm_edits fi if [ $stage -le 10 ]; then $cmd $dir/log/resolve_ctm_edits.log \ steps/cleanup/internal/resolve_ctm_edits_overlaps.py \ ${data_uniform_seg}/segments $decode_dir/ctm_$lmwt/ctm_edits $dir/ctm_edits fi if [ $stage -le 11 ]; then echo "$0: modifying ctm-edits file to allow repetitions [for dysfluencies] and " echo " ... to fix reference mismatches involving non-scored words. " $cmd $dir/log/modify_ctm_edits.log \ steps/cleanup/internal/modify_ctm_edits.py --verbose=3 $dir/non_scored_words.txt \ $dir/ctm_edits $dir/ctm_edits.modified echo " ... See $dir/log/modify_ctm_edits.log for details and stats, including" echo " a list of commonly-repeated words." fi if [ $stage -le 12 ]; then echo "$0: applying 'taint' markers to ctm-edits file to mark silences and" echo " ... non-scored words that are next to errors." $cmd $dir/log/taint_ctm_edits.log \ steps/cleanup/internal/taint_ctm_edits.py --remove-deletions=false \ $dir/ctm_edits.modified $dir/ctm_edits.tainted echo "... Stats, including global cor/ins/del/sub stats, are in $dir/log/taint_ctm_edits.log." fi if [ $stage -le 13 ]; then echo "$0: creating segmentation from ctm-edits file." segmentation_opts=( --min-split-point-duration=$min_split_point_duration --max-deleted-words-kept-when-merging=$max_deleted_words_kept_when_merging --merging.max-wer=$max_wer --merging.max-segment-length=$max_segment_length_for_merging --merging.max-bad-proportion=$max_bad_proportion --merging.max-intersegment-incorrect-words-length=$max_intersegment_incorrect_words_length --splitting.max-segment-length=$max_segment_length_for_splitting --splitting.hard-max-segment-length=$hard_max_segment_length --splitting.min-silence-length=$min_silence_length_to_split_at --splitting.min-non-scored-length=$min_non_scored_length_to_split_at ) $cmd $dir/log/segment_ctm_edits.log \ steps/cleanup/internal/segment_ctm_edits_mild.py \ ${segmentation_opts[@]} $segmentation_extra_opts \ --oov-symbol-file=$lang/oov.txt \ --ctm-edits-out=$dir/ctm_edits.segmented \ --word-stats-out=$dir/word_stats.txt \ $dir/non_scored_words.txt \ $dir/ctm_edits.tainted $dir/text $dir/segments echo "$0: contents of $dir/log/segment_ctm_edits.log are:" cat $dir/log/segment_ctm_edits.log echo "For word-level statistics on p(not-being-in-a-segment), with 'worst' words at the top," echo "see $dir/word_stats.txt" echo "For detailed utterance-level debugging information, see $dir/ctm_edits.segmented" fi mkdir -p $out_data if [ $stage -le 14 ]; then utils/data/subsegment_data_dir.sh $data_uniform_seg \ $dir/segments $dir/text $out_data fi |