segment_long_utterances.sh
17 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
#!/bin/bash
# Copyright 2014 Guoguo Chen
# 2016 Vimal Manohar
# Apache 2.0
# This script performs segmentation of the input data based on the transcription
# and outputs segmented data along with the corresponding aligned transcription.
# The purpose of this script is to divide up the input data (which may consist
# of long recordings such as television shows or audiobooks) into segments which
# are of manageable length for further processing, along with the portion of the
# transcript that seems to match (aligns with) each segment.
# This the light-supervised training scenario where the input transcription is
# not expected to be completely clean and may have significant errors.
# See "JHU Kaldi System for Arabic MGB-3 ASR Challenge using Diarization,
# Audio-transcript Alignment and Transfer Learning": Vimal Manohar, Daniel
# Povey, Sanjeev Khudanpur, ASRU 2017
# (http://www.danielpovey.com/files/2017_asru_mgb3.pdf) for details.
# The output data is not necessarily particularly clean; you can run
# steps/cleanup/clean_and_segment_data.sh on the output in order to
# further clean it and eliminate data where the transcript doesn't seem to
# match.
. ./path.sh
set -e
set -o pipefail
set -u
# Uniform segmentation options
max_segment_duration=30
overlap_duration=5
seconds_per_spk_max=30
# Decode options
graph_opts=
beam=15.0
lattice_beam=1.0
nj=4
lmwt=10
# TF-IDF similarity search options
max_words=1000
num_neighbors_to_search=1 # Number of neighboring documents to search around the one retrieved based on maximum tf-idf similarity.
neighbor_tfidf_threshold=0.5
align_full_hyp=false # Align full hypothesis i.e. trackback from the end to get the alignment.
# First-pass segmentation opts
# These options are passed to the script
# steps/cleanup/internal/segment_ctm_edits_mild.py
segmentation_extra_opts=
min_split_point_duration=0.1
max_deleted_words_kept_when_merging=1
max_wer=50
max_segment_length_for_merging=60
max_bad_proportion=0.75
max_intersegment_incorrect_words_length=1
max_segment_length_for_splitting=10
hard_max_segment_length=15
min_silence_length_to_split_at=0.3
min_non_scored_length_to_split_at=0.3
stage=-1
cmd=run.pl
. utils/parse_options.sh
if [ $# -ne 5 ] && [ $# -ne 7 ]; then
cat <<EOF
Usage: $0 [options] <model-dir> <lang> <data-in> [<text-in> <utt2text>] <segmented-data-out> <work-dir>
e.g.: $0 exp/wsj_tri2b data/lang_nosp data/train_long data/train_long/text data/train_reseg exp/segment_wsj_long_utts_train
This script performs segmentation of the data in <data-in> and writes out the
segmented data (with a segments file) to
<segmented-data-out> along with the corresponding aligned transcription.
Note: If <utt2text> is not provided, the "text" file in <data-in> is used as the
raw transcripts to train biased LM for the utterances.
If <utt2text> is provided, then it should be a mapping from the utterance-ids in
<data-in> to the transcript-keys in the file <text-in>, which will be
used to train biased LMs for the utterances.
The purpose of this script is to divide up the input data (which may consist of
long recordings such as television shows or audiobooks) into segments which are
of manageable length for further processing, along with the portion of the
transcript that seems to match each segment.
The output data is not necessarily particularly clean; you are advised to run
steps/cleanup/clean_and_segment_data.sh on the output in order to further clean
it and eliminate data where the transcript doesn't seem to match.
EOF
exit 1
fi
srcdir=$1
lang=$2
data=$3
extra_files=
utt2text=
text=$data/text
if [ $# -eq 7 ]; then
text=$4
utt2text=$5
out_data=$6
dir=$7
extra_files="$utt2text"
else
out_data=$4
dir=$5
fi
for f in $data/feats.scp $text $extra_files $srcdir/tree \
$srcdir/final.mdl $srcdir/cmvn_opts; do
if [ ! -f $f ]; then
echo "$0: Could not find file $f"
exit 1
fi
done
data_id=`basename $data`
mkdir -p $dir
data_uniform_seg=$dir/${data_id}_uniform_seg
frame_shift=`utils/data/get_frame_shift.sh $data`
# First we split the data into segments of around 30s long, on which
# it would be possible to do a decoding.
# A diarization step will be added in the future.
if [ $stage -le 1 ]; then
echo "$0: Stage 1 (Splitting data directory $data into uniform segments)"
utils/data/get_utt2dur.sh $data
if [ ! -f $data/segments ]; then
utils/data/get_segments_for_data.sh $data > $data/segments
fi
utils/data/get_uniform_subsegments.py \
--max-segment-duration=$max_segment_duration \
--overlap-duration=$overlap_duration \
--max-remaining-duration=$(perl -e "print $max_segment_duration / 2.0") \
$data/segments > $dir/uniform_sub_segments
fi
if [ $stage -le 2 ]; then
echo "$0: Stage 2 (Prepare uniform sub-segmented data directory)"
rm -r $data_uniform_seg || true
if [ ! -z "$seconds_per_spk_max" ]; then
utils/data/subsegment_data_dir.sh \
$data $dir/uniform_sub_segments $dir/${data_id}_uniform_seg.temp
utils/data/modify_speaker_info.sh --seconds-per-spk-max $seconds_per_spk_max \
$dir/${data_id}_uniform_seg.temp $data_uniform_seg
else
utils/data/subsegment_data_dir.sh \
$data $dir/uniform_sub_segments $data_uniform_seg
fi
utils/fix_data_dir.sh $data_uniform_seg
# Compute new cmvn stats for the segmented data directory
steps/compute_cmvn_stats.sh $data_uniform_seg/
fi
graph_dir=$dir/graphs_uniform_seg
if [ $stage -le 3 ]; then
echo "$0: Stage 3 (Building biased-language-model decoding graphs)"
cp $srcdir/final.mdl $dir
cp $srcdir/tree $dir
cp $srcdir/cmvn_opts $dir
cp $srcdir/{splice_opts,delta_opts,final.mat,final.alimdl} $dir 2>/dev/null || true
cp $srcdir/phones.txt $dir 2>/dev/null || true
mkdir -p $graph_dir
n_reco=$(cat $text | wc -l) || exit 1
nj_reco=$nj
if [ $nj -gt $n_reco ]; then
nj_reco=$n_reco
fi
# Make graphs w.r.t. to the original text (usually recording-level)
steps/cleanup/make_biased_lm_graphs.sh $graph_opts \
--nj $nj_reco --cmd "$cmd" $text \
$lang $dir $dir/graphs
if [ -z "$utt2text" ]; then
# and then copy it to the sub-segments.
cat $dir/uniform_sub_segments | awk '{print $1" "$2}' | \
utils/apply_map.pl -f 2 $dir/graphs/HCLG.fsts.scp | \
sort -k1,1 > \
$graph_dir/HCLG.fsts.scp
else
# and then copy it to the sub-segments.
cat $dir/uniform_sub_segments | awk '{print $1" "$2}' | \
utils/apply_map.pl -f 2 $utt2text | \
utils/apply_map.pl -f 2 $dir/graphs/HCLG.fsts.scp | \
sort -k1,1 > \
$graph_dir/HCLG.fsts.scp
fi
cp $lang/words.txt $graph_dir
cp -r $lang/phones $graph_dir
[ -f $dir/graphs/num_pdfs ] && cp $dir/graphs/num_pdfs $graph_dir/
fi
decode_dir=$dir/lats
mkdir -p $decode_dir
if [ $stage -le 4 ]; then
echo "$0: Decoding with biased language models..."
if [ -f $srcdir/trans.1 ]; then
steps/cleanup/decode_fmllr_segmentation.sh \
--beam $beam --lattice-beam $lattice_beam --nj $nj --cmd "$cmd --mem 4G" \
--skip-scoring true --allow-partial false \
$graph_dir $data_uniform_seg $decode_dir
else
steps/cleanup/decode_segmentation.sh \
--beam $beam --lattice-beam $lattice_beam --nj $nj --cmd "$cmd --mem 4G" \
--skip-scoring true --allow-partial false \
$graph_dir $data_uniform_seg $decode_dir
fi
fi
if [ $stage -le 5 ]; then
steps/get_ctm_fast.sh --frame_shift $frame_shift --lmwt $lmwt --cmd "$cmd --mem 4G" \
--print-silence true \
$data_uniform_seg $lang $decode_dir $decode_dir/ctm_$lmwt
fi
# Split the original text into documents, over which we can do
# searching reasonably efficiently. Also get a mapping from the original
# text to the created documents (i.e. text2doc)
# Since the Smith-Waterman alignment is linear in the length of the
# text, we want to keep it reasonably small (a few thousand words).
if [ $stage -le 6 ]; then
# Split the reference text into documents.
mkdir -p $dir/docs
# text2doc is a mapping from the original transcript to the documents
# it is split into.
# The format is
# <original-transcript> <doc1> <doc2> ...
steps/cleanup/internal/split_text_into_docs.pl --max-words $max_words \
$text $dir/docs/doc2text $dir/docs/docs.txt
utils/utt2spk_to_spk2utt.pl $dir/docs/doc2text > $dir/docs/text2doc
fi
if [ $stage -le 7 ]; then
# Get TF-IDF for the reference documents.
echo $nj > $dir/docs/num_jobs
utils/split_data.sh $data_uniform_seg $nj
mkdir -p $dir/docs/split$nj/
# First compute IDF stats
$cmd $dir/log/compute_source_idf_stats.log \
steps/cleanup/internal/compute_tf_idf.py \
--tf-weighting-scheme="raw" \
--idf-weighting-scheme="log" \
--output-idf-stats=$dir/docs/idf_stats.txt \
$dir/docs/docs.txt $dir/docs/src_tf_idf.txt
# Split documents so that they can be accessed easily by parallel jobs.
mkdir -p $dir/docs/split$nj/
sdir=$dir/docs/split$nj
for n in `seq $nj`; do
# old2new_utts is a mapping from the original segments to the
# new segments created by uniformly segmenting.
# The format is <old-utterance> <new-utt1> <new-utt2> ...
utils/filter_scp.pl $data_uniform_seg/split$nj/$n/utt2spk $dir/uniform_sub_segments | \
cut -d ' ' -f 1,2 | utils/utt2spk_to_spk2utt.pl > $sdir/old2new_utts.$n.txt
if [ ! -z "$utt2text" ]; then
# utt2text, if provided, is a mapping from the <old-utterance> to
# <original-transript>.
# Since text2doc is mapping from <original-transcript> to documents, we
# first have to find the original-transcripts that are in the current
# split.
utils/filter_scp.pl $sdir/old2new_utts.$n.txt $utt2text | \
cut -d ' ' -f 2 | sort -u | \
utils/filter_scp.pl /dev/stdin $dir/docs/text2doc > $sdir/text2doc.$n
else
utils/filter_scp.pl $sdir/old2new_utts.$n.txt \
$dir/docs/text2doc > $sdir/text2doc.$n
fi
utils/spk2utt_to_utt2spk.pl $sdir/text2doc.$n | \
utils/filter_scp.pl /dev/stdin $dir/docs/docs.txt > \
$sdir/docs.$n.txt
done
# Compute TF-IDF for the source documents.
$cmd JOB=1:$nj $dir/docs/log/get_tfidf_for_source_texts.JOB.log \
steps/cleanup/internal/compute_tf_idf.py \
--tf-weighting-scheme="raw" \
--idf-weighting-scheme="log" \
--input-idf-stats=$dir/docs/idf_stats.txt \
$sdir/docs.JOB.txt $sdir/src_tf_idf.JOB.txt
sdir=$dir/docs/split$nj
# Make $sdir an absolute pathname.
sdir=`perl -e '($dir,$pwd)= @ARGV; if($dir!~m:^/:) { $dir = "$pwd/$dir"; } print $dir; ' $sdir ${PWD}`
for n in `seq $nj`; do
awk -v f="$sdir/src_tf_idf.$n.txt" '{print $1" "f}' \
$sdir/text2doc.$n
done | perl -ane 'BEGIN { %tfidfs = (); }
{
if (!defined $tfidfs{$F[0]}) {
$tfidfs{$F[0]} = $F[1];
}
}
END {
while(my ($k, $v) = each %tfidfs) {
print "$k $v\n";
} }' > $dir/docs/source2tf_idf.scp
fi
if [ $stage -le 8 ]; then
echo "$0: using default values of non-scored words..."
# At the level of this script we just hard-code it that non-scored words are
# those that map to silence phones (which is what get_non_scored_words.py
# gives us), although this could easily be made user-configurable. This list
# of non-scored words affects the behavior of several of the data-cleanup
# scripts; essentially, we view the non-scored words as negotiable when it
# comes to the reference transcript, so we'll consider changing the reference
# to match the hyp when it comes to these words.
steps/cleanup/internal/get_non_scored_words.py $lang > $dir/non_scored_words.txt
fi
if [ $stage -le 9 ]; then
sdir=$dir/query_docs/split$nj
mkdir -p $sdir
# Compute TF-IDF for the query documents (decode hypotheses).
# The output is an archive of TF-IDF indexed by the query.
$cmd JOB=1:$nj $decode_dir/ctm_$lmwt/log/compute_query_tf_idf.JOB.log \
steps/cleanup/internal/ctm_to_text.pl --non-scored-words $dir/non_scored_words.txt \
$decode_dir/ctm_$lmwt/ctm.JOB \| \
steps/cleanup/internal/compute_tf_idf.py \
--tf-weighting-scheme="normalized" \
--idf-weighting-scheme="log" \
--input-idf-stats=$dir/docs/idf_stats.txt \
--accumulate-over-docs=false \
- $sdir/query_tf_idf.JOB.ark.txt
# The relevant documents can be found using TF-IDF similarity and nearby
# documents can also be picked for the Smith-Waterman alignment stage.
# Get a mapping from the new utterance-ids to original transcripts
if [ -z "$utt2text" ]; then
awk '{print $1" "$2}' $dir/uniform_sub_segments > \
$dir/new2orig_utt
else
awk '{print $1" "$2}' $dir/uniform_sub_segments | \
utils/apply_map.pl -f 2 $utt2text > \
$dir/new2orig_utt
fi
# The query TF-IDFs are all indexed by the utterance-id of the sub-segments.
# The source TF-IDFs use the document-ids created by splitting the reference
# text into documents.
# For each query, we need to retrieve the documents that were created from
# the same original utterance that the sub-segment was from. For this,
# we have to load the source TF-IDF that has those documents. This
# information is provided using the option --source-text-id2tf-idf-file.
# The output of this script is a file where the first column is the
# query-id (i.e. sub-segment-id) and the remaining columns, which is at least
# one in number and a maxmium of (1 + 2 * num-neighbors-to-search) columns
# is the document-ids for the retrieved documents.
$cmd JOB=1:$nj $dir/log/retrieve_similar_docs.JOB.log \
steps/cleanup/internal/retrieve_similar_docs.py \
--query-tfidf=$dir/query_docs/split$nj/query_tf_idf.JOB.ark.txt \
--source-text-id2tfidf=$dir/docs/source2tf_idf.scp \
--source-text-id2doc-ids=$dir/docs/text2doc \
--query-id2source-text-id=$dir/new2orig_utt \
--num-neighbors-to-search=$num_neighbors_to_search \
--neighbor-tfidf-threshold=$neighbor_tfidf_threshold \
--relevant-docs=$dir/query_docs/split$nj/relevant_docs.JOB.txt
$cmd JOB=1:$nj $decode_dir/ctm_$lmwt/log/get_ctm_edits.JOB.log \
steps/cleanup/internal/stitch_documents.py \
--query2docs=$dir/query_docs/split$nj/relevant_docs.JOB.txt \
--input-documents=$dir/docs/split$nj/docs.JOB.txt \
--output-documents=- \| \
steps/cleanup/internal/align_ctm_ref.py --eps-symbol='"<eps>"' \
--oov-word="'`cat $lang/oov.txt`'" --symbol-table=$lang/words.txt \
--hyp-format=CTM --align-full-hyp=$align_full_hyp \
--hyp=$decode_dir/ctm_$lmwt/ctm.JOB --ref=- \
--output=$decode_dir/ctm_$lmwt/ctm_edits.JOB
for n in `seq $nj`; do
cat $decode_dir/ctm_$lmwt/ctm_edits.$n
done > $decode_dir/ctm_$lmwt/ctm_edits
fi
if [ $stage -le 10 ]; then
$cmd $dir/log/resolve_ctm_edits.log \
steps/cleanup/internal/resolve_ctm_edits_overlaps.py \
${data_uniform_seg}/segments $decode_dir/ctm_$lmwt/ctm_edits $dir/ctm_edits
fi
if [ $stage -le 11 ]; then
echo "$0: modifying ctm-edits file to allow repetitions [for dysfluencies] and "
echo " ... to fix reference mismatches involving non-scored words. "
$cmd $dir/log/modify_ctm_edits.log \
steps/cleanup/internal/modify_ctm_edits.py --verbose=3 $dir/non_scored_words.txt \
$dir/ctm_edits $dir/ctm_edits.modified
echo " ... See $dir/log/modify_ctm_edits.log for details and stats, including"
echo " a list of commonly-repeated words."
fi
if [ $stage -le 12 ]; then
echo "$0: applying 'taint' markers to ctm-edits file to mark silences and"
echo " ... non-scored words that are next to errors."
$cmd $dir/log/taint_ctm_edits.log \
steps/cleanup/internal/taint_ctm_edits.py --remove-deletions=false \
$dir/ctm_edits.modified $dir/ctm_edits.tainted
echo "... Stats, including global cor/ins/del/sub stats, are in $dir/log/taint_ctm_edits.log."
fi
if [ $stage -le 13 ]; then
echo "$0: creating segmentation from ctm-edits file."
segmentation_opts=(
--min-split-point-duration=$min_split_point_duration
--max-deleted-words-kept-when-merging=$max_deleted_words_kept_when_merging
--merging.max-wer=$max_wer
--merging.max-segment-length=$max_segment_length_for_merging
--merging.max-bad-proportion=$max_bad_proportion
--merging.max-intersegment-incorrect-words-length=$max_intersegment_incorrect_words_length
--splitting.max-segment-length=$max_segment_length_for_splitting
--splitting.hard-max-segment-length=$hard_max_segment_length
--splitting.min-silence-length=$min_silence_length_to_split_at
--splitting.min-non-scored-length=$min_non_scored_length_to_split_at
)
$cmd $dir/log/segment_ctm_edits.log \
steps/cleanup/internal/segment_ctm_edits_mild.py \
${segmentation_opts[@]} $segmentation_extra_opts \
--oov-symbol-file=$lang/oov.txt \
--ctm-edits-out=$dir/ctm_edits.segmented \
--word-stats-out=$dir/word_stats.txt \
$dir/non_scored_words.txt \
$dir/ctm_edits.tainted $dir/text $dir/segments
echo "$0: contents of $dir/log/segment_ctm_edits.log are:"
cat $dir/log/segment_ctm_edits.log
echo "For word-level statistics on p(not-being-in-a-segment), with 'worst' words at the top,"
echo "see $dir/word_stats.txt"
echo "For detailed utterance-level debugging information, see $dir/ctm_edits.segmented"
fi
mkdir -p $out_data
if [ $stage -le 14 ]; then
utils/data/subsegment_data_dir.sh $data_uniform_seg \
$dir/segments $dir/text $out_data
fi