Blame view
egs/wsj/s5/steps/dict/merge_learned_lexicons.py
15.1 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
#!/usr/bin/env python # Copyright 2018 Xiaohui Zhang # Apache 2.0. from __future__ import print_function from collections import defaultdict import argparse import sys import math def GetArgs(): parser = argparse.ArgumentParser( description = "Convert a learned lexicon produced by steps/dict/select_prons_greedy.sh" "into a lexicon for OOV words (w.r.t. ref. vocab) and a human editable lexicon-edit file." "for in-vocab words, and generate detailed summaries of the lexicon learning results" "The inputs are a learned lexicon, an arc-stats file, and three source lexicons " "(phonetic-decoding(PD)/G2P/ref). The outputs are: a learned lexicon for OOVs" "(learned_lexicon_oov), and a lexicon_edits file (ref_lexicon_edits) containing" "suggested modifications of prons, for in-vocab words.", epilog = "See steps/dict/learn_lexicon_greedy.sh for example.") parser.add_argument("arc_stats_file", metavar = "<arc-stats-file>", type = str, help = "File containing word-pronunciation statistics obtained from lattices; " "each line must be <word> <utt-id> <start-frame> <count> <phones>") parser.add_argument("word_counts_file", metavar = "<counts-file>", type = str, help = "File containing word counts in acoustic training data; " "each line must be <word> <count>.") parser.add_argument("ref_lexicon", metavar = "<reference-lexicon>", type = str, help = "The reference lexicon (most probably hand-derived)." "Each line must be <word> <phones>") parser.add_argument("g2p_lexicon", metavar = "<g2p-expanded-lexicon>", type = str, help = "Candidate ronouciations from G2P results." "Each line must be <word> <phones>") parser.add_argument("pd_lexicon", metavar = "<prons-in-acoustic-evidence>", type = str, help = "Candidate ronouciations from phonetic decoding results." "Each line must be <word> <phones>") parser.add_argument("learned_lexicon", metavar = "<learned-lexicon>", type = str, help = "Learned lexicon." "Each line must be <word> <phones>") parser.add_argument("learned_lexicon_oov", metavar = "<learned-lexicon-oov>", type = str, help = "Output file which is the learned lexicon for words out of the ref. vocab.") parser.add_argument("ref_lexicon_edits", metavar = "<lexicon-edits>", type = str, help = "Output file containing human-readable & editable pronounciation info (and the" "accept/reject decision made by our algorithm) for those words in ref. vocab," "to which any change has been recommended. The info for each word is like:" "------------ an 4086.0 --------------" "R | Y | 2401.6 | AH N" "R | Y | 640.8 | AE N" "P | Y | 1035.5 | IH N" "R(ef), P(hone-decoding) represents the pronunciation source" "Y/N means the recommended decision of including this pron or not" "and the numbers are soft counts accumulated from lattice-align-word outputs. " "See the function WriteEditsAndSummary for more details.") print (' '.join(sys.argv), file=sys.stderr) args = parser.parse_args() args = CheckArgs(args) return args def CheckArgs(args): if args.arc_stats_file == "-": args.arc_stats_file_handle = sys.stdin else: args.arc_stats_file_handle = open(args.arc_stats_file) args.word_counts_file_handle = open(args.word_counts_file) args.ref_lexicon_handle = open(args.ref_lexicon) args.g2p_lexicon_handle = open(args.g2p_lexicon) args.pd_lexicon_handle = open(args.pd_lexicon) args.learned_lexicon_handle = open(args.learned_lexicon) args.learned_lexicon_oov_handle = open(args.learned_lexicon_oov, "w") args.ref_lexicon_edits_handle = open(args.ref_lexicon_edits, "w") return args def ReadArcStats(arc_stats_file_handle): stats = defaultdict(lambda : defaultdict(dict)) stats_summed = defaultdict(float) for line in arc_stats_file_handle.readlines(): splits = line.strip().split() if (len(splits) == 0): continue if (len(splits) < 5): raise Exception('Invalid format of line ' + line + ' in ' + arc_stats_file) utt = splits[1] start_frame = int(splits[2]) word = splits[0] count = float(splits[3]) phones = splits[4:] phones = ' '.join(phones) stats[word][(utt, start_frame)][phones] = count stats_summed[(word, phones)] += count return stats, stats_summed def ReadWordCounts(word_counts_file_handle): counts = {} for line in word_counts_file_handle.readlines(): splits = line.strip().split() if len(splits) < 2: raise Exception('Invalid format of line ' + line + ' in counts file.') word = splits[0] count = int(splits[1]) counts[word] = count return counts def ReadLexicon(args, lexicon_file_handle, counts): # we're skipping any word not in counts (not seen in training data), # cause we're only learning prons for words who have acoustic examples. lexicon = defaultdict(set) for line in lexicon_file_handle.readlines(): splits = line.strip().split() if len(splits) == 0: continue if len(splits) < 2: raise Exception('Invalid format of line ' + line + ' in lexicon file.') word = splits[0] if word not in counts: continue phones = ' '.join(splits[1:]) lexicon[word].add(phones) return lexicon def WriteEditsAndSummary(args, learned_lexicon, ref_lexicon, pd_lexicon, g2p_lexicon, counts, stats, stats_summed): # Note that learned_lexicon and ref_lexicon are dicts of sets of prons, while the other two lexicons are sets of (word, pron) pairs. threshold = 2 words = [defaultdict(set) for i in range(4)] # "words" contains four bins, where we # classify each word into, according to whether it's count > threshold, # and whether it's OOVs w.r.t the reference lexicon. src = {} print("# Note: This file contains pronunciation info for words who have candidate " "prons from G2P/phonetic-decoding accepted in the learned lexicon" ", sorted by their counts in acoustic training data, " ,file=args.ref_lexicon_edits_handle) print("# 1st Col: source of the candidate pron: G(2P) / P(hone-decoding) / R(eference)." ,file=args.ref_lexicon_edits_handle) print("# 2nd Col: accepted or not in the learned lexicon (Y/N).", file=args.ref_lexicon_edits_handle) print("# 3rd Col: soft counts from lattice-alignment (not augmented by prior-counts)." ,file=args.ref_lexicon_edits_handle) print("# 4th Col: the pronunciation cadidate.", file=args.ref_lexicon_edits_handle) # words which are to be printed into the edits file. words_to_edit = [] num_prons_tot = 0 for word in learned_lexicon: num_prons_tot += len(learned_lexicon[word]) count = len(stats[word]) # This count could be smaller than the count read from the dict "counts", # since in each sub-utterance, multiple occurences (which is rare) of the same word are compressed into one. # We use this count here so that in the edit-file, soft counts for each word sum up to one. flags = ['0' for i in range(3)] # "flags" contains three binary indicators, # indicating where this word's pronunciations come from. for pron in learned_lexicon[word]: if word in pd_lexicon and pron in pd_lexicon[word]: flags[0] = '1' src[(word, pron)] = 'P' elif word in ref_lexicon and pron in ref_lexicon[word]: flags[1] = '1' src[(word, pron)] = 'R' elif word in g2p_lexicon and pron in g2p_lexicon[word]: flags[2] = '1' src[(word, pron)] = 'G' if word in ref_lexicon: all_ref_prons_accepted = True for pron in ref_lexicon[word]: if pron not in learned_lexicon[word]: all_ref_prons_accepted = False break if not all_ref_prons_accepted or flags[0] == '1' or flags[2] == '1': words_to_edit.append((word, len(stats[word]))) if count > threshold: words[0][flags[0] + flags[1] + flags[2]].add(word) else: words[1][flags[0] + flags[1] + flags[2]].add(word) else: if count > threshold: words[2][flags[0] + flags[2]].add(word) else: words[3][flags[0] + flags[2]].add(word) words_to_edit_sorted = sorted(words_to_edit, key=lambda entry: entry[1], reverse=True) for word, count in words_to_edit_sorted: print("------------",word, "%2.1f" % count, "--------------", file=args.ref_lexicon_edits_handle) learned_prons = [] for pron in learned_lexicon[word]: learned_prons.append((src[(word, pron)], 'Y', stats_summed[(word, pron)], pron)) for pron in ref_lexicon[word]: if pron not in learned_lexicon[word]: learned_prons.append(('R', 'N', stats_summed[(word, pron)], pron)) learned_prons_sorted = sorted(learned_prons, key=lambda item: item[2], reverse=True) for item in learned_prons_sorted: print('{} | {} | {:.2f} | {}'.format(item[0], item[1], item[2], item[3]), file=args.ref_lexicon_edits_handle) num_oovs_with_acoustic_evidence = len(set(learned_lexicon.keys()).difference(set(ref_lexicon.keys()))) num_oovs = len(set(counts.keys()).difference(set(ref_lexicon.keys()))) num_ivs = len(learned_lexicon) - num_oovs_with_acoustic_evidence print("Average num. prons per word in the learned lexicon is {}".format(float(num_prons_tot)/float(len(learned_lexicon))), file=sys.stderr) # print("Here are the words whose reference pron candidates were all declined", words[0]['100'], file=sys.stderr) print("-------------------------------------------------Summary------------------------------------------", file=sys.stderr) print("We have acoustic evidence for {} out of {} in-vocab (w.r.t the reference lexicon) words from the acoustic training data.".format(num_ivs, len(ref_lexicon)), file=sys.stderr) print(" Among those frequent words whose counts in the training text > ", threshold, ":", file=sys.stderr) num_freq_ivs_from_all_sources = len(words[0]['111']) + len(words[0]['110']) + len(words[0]['011']) num_freq_ivs_from_g2p_or_phonetic_decoding = len(words[0]['101']) + len(words[0]['001']) + len(words[0]['100']) num_freq_ivs_from_ref = len(words[0]['010']) num_infreq_ivs_from_all_sources = len(words[1]['111']) + len(words[1]['110']) + len(words[1]['011']) num_infreq_ivs_from_g2p_or_phonetic_decoding = len(words[1]['101']) + len(words[1]['001']) + len(words[1]['100']) num_infreq_ivs_from_ref = len(words[1]['010']) print(' {} words\' selected prons came from the reference lexicon, G2P/phonetic-decoding.'.format(num_freq_ivs_from_all_sources), file=sys.stderr) print(' {} words\' selected prons come from G2P/phonetic-decoding-generated.'.format(num_freq_ivs_from_g2p_or_phonetic_decoding), file=sys.stderr) print(' {} words\' selected prons came from the reference lexicon only.'.format(num_freq_ivs_from_ref), file=sys.stderr) print(' For those words whose counts in the training text <= {}:'.format(threshold), file=sys.stderr) print(' {} words\' selected prons came from the reference lexicon, G2P/phonetic-decoding.'.format(num_infreq_ivs_from_all_sources), file=sys.stderr) print(' {} words\' selected prons come from G2P/phonetic-decoding-generated.'.format(num_infreq_ivs_from_g2p_or_phonetic_decoding), file=sys.stderr) print(' {} words\' selected prons came from the reference lexicon only.'.format(num_infreq_ivs_from_ref), file=sys.stderr) print("---------------------------------------------------------------------------------------------------", file=sys.stderr) num_freq_oovs_from_both_sources = len(words[2]['11']) num_freq_oovs_from_phonetic_decoding = len(words[2]['10']) num_freq_oovs_from_g2p = len(words[2]['01']) num_infreq_oovs_from_both_sources = len(words[3]['11']) num_infreq_oovs_from_phonetic_decoding = len(words[3]['10']) num_infreq_oovs_from_g2p = len(words[3]['01']) print('We have acoustic evidence for {} out of {} OOV (w.r.t the reference lexicon) words from the acoustic training data.'.format(num_oovs_with_acoustic_evidence, num_oovs), file=sys.stderr) print(' Among those words whose counts in the training text > {}:'.format(threshold), file=sys.stderr) print(' {} words\' selected prons came from G2P and phonetic-decoding.'.format(num_freq_oovs_from_both_sources), file=sys.stderr) print(' {} words\' selected prons came from phonetic decoding only.'.format(num_freq_oovs_from_phonetic_decoding), file=sys.stderr) print(' {} words\' selected prons came from G2P only.'.format(num_freq_oovs_from_g2p), file=sys.stderr) print(' For those words whose counts in the training text <= {}:'.format(threshold), file=sys.stderr) print(' {} words\' selected prons came from G2P and phonetic-decoding.'.format(num_infreq_oovs_from_both_sources), file=sys.stderr) print(' {} words\' selected prons came from phonetic decoding only.'.format(num_infreq_oovs_from_phonetic_decoding), file=sys.stderr) print(' {} words\' selected prons came from G2P only.'.format(num_infreq_oovs_from_g2p), file=sys.stderr) def WriteLearnedLexiconOov(learned_lexicon, ref_lexicon, file_handle): for word, prons in learned_lexicon.iteritems(): if word not in ref_lexicon: for pron in prons: print('{0} {1}'.format(word, pron), file=file_handle) file_handle.close() def Main(): args = GetArgs() # Read in three lexicon sources, word counts, and pron stats. counts = ReadWordCounts(args.word_counts_file_handle) ref_lexicon = ReadLexicon(args, args.ref_lexicon_handle, counts) g2p_lexicon = ReadLexicon(args, args.g2p_lexicon_handle, counts) pd_lexicon = ReadLexicon(args, args.pd_lexicon_handle, counts) stats, stats_summed = ReadArcStats(args.arc_stats_file_handle) learned_lexicon = ReadLexicon(args, args.learned_lexicon_handle, counts) # Write the learned prons for words out of the ref. vocab into learned_lexicon_oov. WriteLearnedLexiconOov(learned_lexicon, ref_lexicon, args.learned_lexicon_oov_handle) # Edits will be printed into ref_lexicon_edits, and the summary will be printed into stderr. WriteEditsAndSummary(args, learned_lexicon, ref_lexicon, pd_lexicon, g2p_lexicon, counts, stats, stats_summed) if __name__ == "__main__": Main() |