merge_learned_lexicons.py
15.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
#!/usr/bin/env python
# Copyright 2018 Xiaohui Zhang
# Apache 2.0.
from __future__ import print_function
from collections import defaultdict
import argparse
import sys
import math
def GetArgs():
parser = argparse.ArgumentParser(
description = "Convert a learned lexicon produced by steps/dict/select_prons_greedy.sh"
"into a lexicon for OOV words (w.r.t. ref. vocab) and a human editable lexicon-edit file."
"for in-vocab words, and generate detailed summaries of the lexicon learning results"
"The inputs are a learned lexicon, an arc-stats file, and three source lexicons "
"(phonetic-decoding(PD)/G2P/ref). The outputs are: a learned lexicon for OOVs"
"(learned_lexicon_oov), and a lexicon_edits file (ref_lexicon_edits) containing"
"suggested modifications of prons, for in-vocab words.",
epilog = "See steps/dict/learn_lexicon_greedy.sh for example.")
parser.add_argument("arc_stats_file", metavar = "<arc-stats-file>", type = str,
help = "File containing word-pronunciation statistics obtained from lattices; "
"each line must be <word> <utt-id> <start-frame> <count> <phones>")
parser.add_argument("word_counts_file", metavar = "<counts-file>", type = str,
help = "File containing word counts in acoustic training data; "
"each line must be <word> <count>.")
parser.add_argument("ref_lexicon", metavar = "<reference-lexicon>", type = str,
help = "The reference lexicon (most probably hand-derived)."
"Each line must be <word> <phones>")
parser.add_argument("g2p_lexicon", metavar = "<g2p-expanded-lexicon>", type = str,
help = "Candidate ronouciations from G2P results."
"Each line must be <word> <phones>")
parser.add_argument("pd_lexicon", metavar = "<prons-in-acoustic-evidence>", type = str,
help = "Candidate ronouciations from phonetic decoding results."
"Each line must be <word> <phones>")
parser.add_argument("learned_lexicon", metavar = "<learned-lexicon>", type = str,
help = "Learned lexicon."
"Each line must be <word> <phones>")
parser.add_argument("learned_lexicon_oov", metavar = "<learned-lexicon-oov>", type = str,
help = "Output file which is the learned lexicon for words out of the ref. vocab.")
parser.add_argument("ref_lexicon_edits", metavar = "<lexicon-edits>", type = str,
help = "Output file containing human-readable & editable pronounciation info (and the"
"accept/reject decision made by our algorithm) for those words in ref. vocab,"
"to which any change has been recommended. The info for each word is like:"
"------------ an 4086.0 --------------"
"R | Y | 2401.6 | AH N"
"R | Y | 640.8 | AE N"
"P | Y | 1035.5 | IH N"
"R(ef), P(hone-decoding) represents the pronunciation source"
"Y/N means the recommended decision of including this pron or not"
"and the numbers are soft counts accumulated from lattice-align-word outputs. "
"See the function WriteEditsAndSummary for more details.")
print (' '.join(sys.argv), file=sys.stderr)
args = parser.parse_args()
args = CheckArgs(args)
return args
def CheckArgs(args):
if args.arc_stats_file == "-":
args.arc_stats_file_handle = sys.stdin
else:
args.arc_stats_file_handle = open(args.arc_stats_file)
args.word_counts_file_handle = open(args.word_counts_file)
args.ref_lexicon_handle = open(args.ref_lexicon)
args.g2p_lexicon_handle = open(args.g2p_lexicon)
args.pd_lexicon_handle = open(args.pd_lexicon)
args.learned_lexicon_handle = open(args.learned_lexicon)
args.learned_lexicon_oov_handle = open(args.learned_lexicon_oov, "w")
args.ref_lexicon_edits_handle = open(args.ref_lexicon_edits, "w")
return args
def ReadArcStats(arc_stats_file_handle):
stats = defaultdict(lambda : defaultdict(dict))
stats_summed = defaultdict(float)
for line in arc_stats_file_handle.readlines():
splits = line.strip().split()
if (len(splits) == 0):
continue
if (len(splits) < 5):
raise Exception('Invalid format of line ' + line
+ ' in ' + arc_stats_file)
utt = splits[1]
start_frame = int(splits[2])
word = splits[0]
count = float(splits[3])
phones = splits[4:]
phones = ' '.join(phones)
stats[word][(utt, start_frame)][phones] = count
stats_summed[(word, phones)] += count
return stats, stats_summed
def ReadWordCounts(word_counts_file_handle):
counts = {}
for line in word_counts_file_handle.readlines():
splits = line.strip().split()
if len(splits) < 2:
raise Exception('Invalid format of line ' + line
+ ' in counts file.')
word = splits[0]
count = int(splits[1])
counts[word] = count
return counts
def ReadLexicon(args, lexicon_file_handle, counts):
# we're skipping any word not in counts (not seen in training data),
# cause we're only learning prons for words who have acoustic examples.
lexicon = defaultdict(set)
for line in lexicon_file_handle.readlines():
splits = line.strip().split()
if len(splits) == 0:
continue
if len(splits) < 2:
raise Exception('Invalid format of line ' + line
+ ' in lexicon file.')
word = splits[0]
if word not in counts:
continue
phones = ' '.join(splits[1:])
lexicon[word].add(phones)
return lexicon
def WriteEditsAndSummary(args, learned_lexicon, ref_lexicon, pd_lexicon, g2p_lexicon, counts, stats, stats_summed):
# Note that learned_lexicon and ref_lexicon are dicts of sets of prons, while the other two lexicons are sets of (word, pron) pairs.
threshold = 2
words = [defaultdict(set) for i in range(4)] # "words" contains four bins, where we
# classify each word into, according to whether it's count > threshold,
# and whether it's OOVs w.r.t the reference lexicon.
src = {}
print("# Note: This file contains pronunciation info for words who have candidate "
"prons from G2P/phonetic-decoding accepted in the learned lexicon"
", sorted by their counts in acoustic training data, "
,file=args.ref_lexicon_edits_handle)
print("# 1st Col: source of the candidate pron: G(2P) / P(hone-decoding) / R(eference)."
,file=args.ref_lexicon_edits_handle)
print("# 2nd Col: accepted or not in the learned lexicon (Y/N).", file=args.ref_lexicon_edits_handle)
print("# 3rd Col: soft counts from lattice-alignment (not augmented by prior-counts)."
,file=args.ref_lexicon_edits_handle)
print("# 4th Col: the pronunciation cadidate.", file=args.ref_lexicon_edits_handle)
# words which are to be printed into the edits file.
words_to_edit = []
num_prons_tot = 0
for word in learned_lexicon:
num_prons_tot += len(learned_lexicon[word])
count = len(stats[word]) # This count could be smaller than the count read from the dict "counts",
# since in each sub-utterance, multiple occurences (which is rare) of the same word are compressed into one.
# We use this count here so that in the edit-file, soft counts for each word sum up to one.
flags = ['0' for i in range(3)] # "flags" contains three binary indicators,
# indicating where this word's pronunciations come from.
for pron in learned_lexicon[word]:
if word in pd_lexicon and pron in pd_lexicon[word]:
flags[0] = '1'
src[(word, pron)] = 'P'
elif word in ref_lexicon and pron in ref_lexicon[word]:
flags[1] = '1'
src[(word, pron)] = 'R'
elif word in g2p_lexicon and pron in g2p_lexicon[word]:
flags[2] = '1'
src[(word, pron)] = 'G'
if word in ref_lexicon:
all_ref_prons_accepted = True
for pron in ref_lexicon[word]:
if pron not in learned_lexicon[word]:
all_ref_prons_accepted = False
break
if not all_ref_prons_accepted or flags[0] == '1' or flags[2] == '1':
words_to_edit.append((word, len(stats[word])))
if count > threshold:
words[0][flags[0] + flags[1] + flags[2]].add(word)
else:
words[1][flags[0] + flags[1] + flags[2]].add(word)
else:
if count > threshold:
words[2][flags[0] + flags[2]].add(word)
else:
words[3][flags[0] + flags[2]].add(word)
words_to_edit_sorted = sorted(words_to_edit, key=lambda entry: entry[1], reverse=True)
for word, count in words_to_edit_sorted:
print("------------",word, "%2.1f" % count, "--------------", file=args.ref_lexicon_edits_handle)
learned_prons = []
for pron in learned_lexicon[word]:
learned_prons.append((src[(word, pron)], 'Y', stats_summed[(word, pron)], pron))
for pron in ref_lexicon[word]:
if pron not in learned_lexicon[word]:
learned_prons.append(('R', 'N', stats_summed[(word, pron)], pron))
learned_prons_sorted = sorted(learned_prons, key=lambda item: item[2], reverse=True)
for item in learned_prons_sorted:
print('{} | {} | {:.2f} | {}'.format(item[0], item[1], item[2], item[3]), file=args.ref_lexicon_edits_handle)
num_oovs_with_acoustic_evidence = len(set(learned_lexicon.keys()).difference(set(ref_lexicon.keys())))
num_oovs = len(set(counts.keys()).difference(set(ref_lexicon.keys())))
num_ivs = len(learned_lexicon) - num_oovs_with_acoustic_evidence
print("Average num. prons per word in the learned lexicon is {}".format(float(num_prons_tot)/float(len(learned_lexicon))), file=sys.stderr)
# print("Here are the words whose reference pron candidates were all declined", words[0]['100'], file=sys.stderr)
print("-------------------------------------------------Summary------------------------------------------", file=sys.stderr)
print("We have acoustic evidence for {} out of {} in-vocab (w.r.t the reference lexicon) words from the acoustic training data.".format(num_ivs, len(ref_lexicon)), file=sys.stderr)
print(" Among those frequent words whose counts in the training text > ", threshold, ":", file=sys.stderr)
num_freq_ivs_from_all_sources = len(words[0]['111']) + len(words[0]['110']) + len(words[0]['011'])
num_freq_ivs_from_g2p_or_phonetic_decoding = len(words[0]['101']) + len(words[0]['001']) + len(words[0]['100'])
num_freq_ivs_from_ref = len(words[0]['010'])
num_infreq_ivs_from_all_sources = len(words[1]['111']) + len(words[1]['110']) + len(words[1]['011'])
num_infreq_ivs_from_g2p_or_phonetic_decoding = len(words[1]['101']) + len(words[1]['001']) + len(words[1]['100'])
num_infreq_ivs_from_ref = len(words[1]['010'])
print(' {} words\' selected prons came from the reference lexicon, G2P/phonetic-decoding.'.format(num_freq_ivs_from_all_sources), file=sys.stderr)
print(' {} words\' selected prons come from G2P/phonetic-decoding-generated.'.format(num_freq_ivs_from_g2p_or_phonetic_decoding), file=sys.stderr)
print(' {} words\' selected prons came from the reference lexicon only.'.format(num_freq_ivs_from_ref), file=sys.stderr)
print(' For those words whose counts in the training text <= {}:'.format(threshold), file=sys.stderr)
print(' {} words\' selected prons came from the reference lexicon, G2P/phonetic-decoding.'.format(num_infreq_ivs_from_all_sources), file=sys.stderr)
print(' {} words\' selected prons come from G2P/phonetic-decoding-generated.'.format(num_infreq_ivs_from_g2p_or_phonetic_decoding), file=sys.stderr)
print(' {} words\' selected prons came from the reference lexicon only.'.format(num_infreq_ivs_from_ref), file=sys.stderr)
print("---------------------------------------------------------------------------------------------------", file=sys.stderr)
num_freq_oovs_from_both_sources = len(words[2]['11'])
num_freq_oovs_from_phonetic_decoding = len(words[2]['10'])
num_freq_oovs_from_g2p = len(words[2]['01'])
num_infreq_oovs_from_both_sources = len(words[3]['11'])
num_infreq_oovs_from_phonetic_decoding = len(words[3]['10'])
num_infreq_oovs_from_g2p = len(words[3]['01'])
print('We have acoustic evidence for {} out of {} OOV (w.r.t the reference lexicon) words from the acoustic training data.'.format(num_oovs_with_acoustic_evidence, num_oovs), file=sys.stderr)
print(' Among those words whose counts in the training text > {}:'.format(threshold), file=sys.stderr)
print(' {} words\' selected prons came from G2P and phonetic-decoding.'.format(num_freq_oovs_from_both_sources), file=sys.stderr)
print(' {} words\' selected prons came from phonetic decoding only.'.format(num_freq_oovs_from_phonetic_decoding), file=sys.stderr)
print(' {} words\' selected prons came from G2P only.'.format(num_freq_oovs_from_g2p), file=sys.stderr)
print(' For those words whose counts in the training text <= {}:'.format(threshold), file=sys.stderr)
print(' {} words\' selected prons came from G2P and phonetic-decoding.'.format(num_infreq_oovs_from_both_sources), file=sys.stderr)
print(' {} words\' selected prons came from phonetic decoding only.'.format(num_infreq_oovs_from_phonetic_decoding), file=sys.stderr)
print(' {} words\' selected prons came from G2P only.'.format(num_infreq_oovs_from_g2p), file=sys.stderr)
def WriteLearnedLexiconOov(learned_lexicon, ref_lexicon, file_handle):
for word, prons in learned_lexicon.iteritems():
if word not in ref_lexicon:
for pron in prons:
print('{0} {1}'.format(word, pron), file=file_handle)
file_handle.close()
def Main():
args = GetArgs()
# Read in three lexicon sources, word counts, and pron stats.
counts = ReadWordCounts(args.word_counts_file_handle)
ref_lexicon = ReadLexicon(args, args.ref_lexicon_handle, counts)
g2p_lexicon = ReadLexicon(args, args.g2p_lexicon_handle, counts)
pd_lexicon = ReadLexicon(args, args.pd_lexicon_handle, counts)
stats, stats_summed = ReadArcStats(args.arc_stats_file_handle)
learned_lexicon = ReadLexicon(args, args.learned_lexicon_handle, counts)
# Write the learned prons for words out of the ref. vocab into learned_lexicon_oov.
WriteLearnedLexiconOov(learned_lexicon, ref_lexicon, args.learned_lexicon_oov_handle)
# Edits will be printed into ref_lexicon_edits, and the summary will be printed into stderr.
WriteEditsAndSummary(args, learned_lexicon, ref_lexicon, pd_lexicon, g2p_lexicon, counts, stats, stats_summed)
if __name__ == "__main__":
Main()