Blame view
egs/wsj/s5/steps/dict/select_prons_greedy.py
18.7 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
#!/usr/bin/env python # Copyright 2018 Xiaohui Zhang # Apache 2.0. from __future__ import print_function from collections import defaultdict import argparse import sys import math def GetArgs(): parser = argparse.ArgumentParser( description = "Use a greedy framework to select pronunciation candidates" "from three sources: a reference lexicon, G2P lexicon and phonetic-decoding" "(PD) lexicon. Basically, this script implements the Alg. 1 in the paper:" "Acoustic data-driven lexicon learning based on a greedy pronunciation " "selection framework, by X. Zhang, V. Mahonar, D. Povey and S. Khudanpur," "Interspeech 2017. The inputs are an arc-stats file, containing " "acoustic evidence (tau_{uwb} in the paper) and three source lexicons " "(phonetic-decoding(PD)/G2P/ref). The outputs is the learned lexicon for" "all words in the arc_stats (acoustic evidence) file.", epilog = "See steps/dict/learn_lexicon_greedy.sh for example.") parser.add_argument("--alpha", type = str, default = "0,0,0", help = "Scaling factors for the likelihood reduction threshold." "of three pronunciaiton candidate sources: phonetic-decoding (PD)," "G2P and reference. The valid range of each dimension is [0, 1], and" "a large value means we prune pronunciations from this source more" "aggressively. Setting a dimension to zero means we never want to remove" "pronunciaiton from that source. See Section 4.3 in the paper for details.") parser.add_argument("--beta", type = str, default = "0,0,0", help = "smoothing factors for the likelihood reduction term." "of three pronunciaiton candidate sources: phonetic-decoding (PD)," "G2P and reference. The valid range of each dimension is [0, 100], and" "a large value means we prune pronunciations from this source more" "aggressively. See Section 4.3 in the paper for details.") parser.add_argument("--delta", type = float, default = 0.000000001, help = "Floor value of the pronunciation posterior statistics." "The valid range is (0, 0.01)," "See Section 3 in the paper for details.") parser.add_argument("silence_phones_file", metavar = "<silphone-file>", type = str, help = "File containing a list of silence phones.") parser.add_argument("arc_stats_file", metavar = "<arc-stats-file>", type = str, help = "File containing word-pronunciation statistics obtained from lattices; " "each line must be <word> <utt-id> <start-frame> <count> <phones>") parser.add_argument("word_counts_file", metavar = "<counts-file>", type = str, help = "File containing word counts in acoustic training data; " "each line must be <word> <count>.") parser.add_argument("ref_lexicon", metavar = "<reference-lexicon>", type = str, help = "The reference lexicon (most probably hand-derived)." "Each line must be <word> <phones>") parser.add_argument("g2p_lexicon", metavar = "<g2p-expanded-lexicon>", type = str, help = "Candidate ronouciations from G2P results." "Each line must be <word> <phones>") parser.add_argument("pd_lexicon", metavar = "<phonetic-decoding-lexicon>", type = str, help = "Candidate ronouciations from phonetic decoding results." "Each line must be <word> <phones>") parser.add_argument("learned_lexicon", metavar = "<learned-lexicon>", type = str, help = "Learned lexicon.") print (' '.join(sys.argv), file=sys.stderr) args = parser.parse_args() args = CheckArgs(args) return args def CheckArgs(args): args.silence_phones_file_handle = open(args.silence_phones_file) if args.arc_stats_file == "-": args.arc_stats_file_handle = sys.stdin else: args.arc_stats_file_handle = open(args.arc_stats_file) args.word_counts_file_handle = open(args.word_counts_file) args.ref_lexicon_handle = open(args.ref_lexicon) args.g2p_lexicon_handle = open(args.g2p_lexicon) args.pd_lexicon_handle = open(args.pd_lexicon) args.learned_lexicon_handle = open(args.learned_lexicon, "w") alpha = args.alpha.strip().split(',') if len(alpha) is not 3: raise Exception('Invalid alpha ', args.alpha) for i in range(0,3): if float(alpha[i]) < 0 or float(alpha[i]) > 1: raise Exception('alaph ', alpha[i], ' is invalid, it must be within [0, 1].') if float(alpha[i]) == 0: alpha[i] = -1e-3 # The absolute likelihood loss (search for loss_abs) is supposed to be positive. # But it could be negative near zero because of numerical precision limit. # In this case, even if alpha is set to be zero, which means we never want to # remove pronunciation from that source, the quality score (search for q_b) # could still be negative, which means this pron could be potentially removed. # To prevent this, we set alpha as a negative value near zero to ensure # q_b is always positive. args.alpha = [float(alpha[0]), float(alpha[1]), float(alpha[2])] print("[alpha_{pd}, alpha_{g2p}, alpha_{ref}] is: ", args.alpha) exit beta = args.beta.strip().split(',') if len(beta) is not 3: raise Exception('Invalid beta ', args.beta) for i in range(0,3): if float(beta[i]) < 0 or float(beta[i]) > 100: raise Exception('beta ', beta[i], ' is invalid, it must be within [0, 100].') args.beta = [float(beta[0]), float(beta[1]), float(beta[2])] print("[beta_{pd}, beta_{g2p}, beta_{ref}] is: ", args.beta) if args.delta <= 0 or args.delta > 0.1: raise Exception('delta ', args.delta, ' is invalid, it must be within' '(0, 0.01).') print("delta is: ", args.delta) return args def ReadArcStats(arc_stats_file_handle): stats = defaultdict(lambda : defaultdict(dict)) stats_summed = defaultdict(float) for line in arc_stats_file_handle.readlines(): splits = line.strip().split() if (len(splits) == 0): continue if (len(splits) < 5): raise Exception('Invalid format of line ' + line + ' in ' + arc_stats_file) utt = splits[1] start_frame = int(splits[2]) word = splits[0] count = float(splits[3]) phones = splits[4:] phones = ' '.join(phones) stats[word][(utt, start_frame)][phones] = count stats_summed[(word, phones)] += count return stats, stats_summed def ReadWordCounts(word_counts_file_handle): counts = {} for line in word_counts_file_handle.readlines(): splits = line.strip().split() if len(splits) < 2: raise Exception('Invalid format of line ' + line + ' in counts file.') word = splits[0] count = int(splits[1]) counts[word] = count return counts def ReadLexicon(args, lexicon_file_handle, counts): # we're skipping any word not in counts (not seen in training data), # cause we're only learning prons for words who have acoustic examples. lexicon = defaultdict(set) for line in lexicon_file_handle.readlines(): splits = line.strip().split() if len(splits) == 0: continue if len(splits) < 2: raise Exception('Invalid format of line ' + line + ' in lexicon file.') word = splits[0] if word not in counts: continue phones = ' '.join(splits[1:]) lexicon[word].add(phones) return lexicon def FilterPhoneticDecodingLexicon(args, pd_lexicon): # We want to remove all candidates which contain silence phones silphones = set() for line in args.silence_phones_file_handle: silphones.add(line.strip()) rejected_candidates = set() for word, prons in pd_lexicon.iteritems(): for pron in prons: for phone in pron.split(): if phone in silphones: rejected_candidates.add((word, pron)) break for word, pron in rejected_candidates: pd_lexicon[word].remove(pron) return pd_lexicon # One iteration of Expectation-Maximization computation (Eq. 3-4 in the paper). def OneEMIter(args, word, stats, prons, pron_probs, debug=False): prob_acc = [0.0 for i in range(len(prons[word]))] s = sum(pron_probs) for i in range(len(pron_probs)): pron_probs[i] = pron_probs[i] / s log_like = 0.0 for (utt, start_frame) in stats[word]: prob = [] soft_counts = [] for i in range(len(prons[word])): phones = prons[word][i] soft_count = stats[word][(utt, start_frame)].get(phones, 0) if soft_count < args.delta: soft_count = args.delta soft_counts.append(soft_count) prob = [i[0] * i[1] for i in zip(soft_counts, pron_probs)] for i in range(len(prons[word])): prob_acc[i] += prob[i] / sum(prob) log_like += math.log(sum(prob)) pron_probs = [1.0 / float(len(stats[word])) * p for p in prob_acc] log_like = 1.0 / float(len(stats[word])) * log_like if debug: print("Log_like of the word: ", log_like, "pron probs: ", pron_probs) return pron_probs, log_like def SelectPronsGreedy(args, stats, counts, ref_lexicon, g2p_lexicon, pd_lexicon, dianostic_info=False): prons = defaultdict(list) # Put all possible prons from three source lexicons into this dictionary src = {} # Source of each (word, pron) pair: 'P' = phonetic-decoding, 'G' = G2P, 'R' = reference learned_lexicon = defaultdict(set) # Put all selected prons in this dictionary for lexicon in ref_lexicon, g2p_lexicon, pd_lexicon: for word in lexicon: for pron in lexicon[word]: prons[word].append(pron) for word in prons: for pron in prons[word]: if word in pd_lexicon and pron in pd_lexicon[word]: src[(word, pron)] = 'P' if word in g2p_lexicon and pron in g2p_lexicon[word]: src[(word, pron)] = 'G' if word in ref_lexicon and pron in ref_lexicon[word]: src[(word, pron)] = 'R' for word in prons: if word not in stats: continue n = len(prons[word]) pron_probs = [1/float(n) for i in range(n)] if dianostic_info: print("pronunciations of word '{}': {}".format(word, prons[word])) active_indexes = set(range(len(prons[word]))) deleted_prons = [] # indexes of prons to be deleted soft_counts_normalized = [] while len(active_indexes) > 1: log_like = 1.0 log_like_last = -1.0 num_iters = 0 while abs(log_like - log_like_last) > 1e-7: num_iters += 1 log_like_last = log_like pron_probs, log_like = OneEMIter(args, word, stats, prons, pron_probs, False) if log_like_last == 1.0 and len(soft_counts_normalized) == 0: # the first iteration soft_counts_normalized = pron_probs if dianostic_info: print("Avg.(over all egs) soft counts: {}".format(soft_counts_normalized)) if dianostic_info: print(" Log_like after {} iters of EM: {}, estimated pron_probs: {} ".format( num_iters, log_like, pron_probs)) candidates_to_delete = [] for i in active_indexes: pron_probs_mod = [p for p in pron_probs] pron_probs_mod[i] = 0.0 for j in range(len(pron_probs_mod)): if j in active_indexes and j != i: pron_probs_mod[j] += 0.01 pron_probs_mod = [s / sum(pron_probs_mod) for s in pron_probs_mod] log_like2 = 1.0 log_like2_last = -1.0 num_iters2 = 0 # Running EM until convengence while abs(log_like2 - log_like2_last) > 0.001 : num_iters2 += 1 log_like2_last = log_like2 pron_probs_mod, log_like2 = OneEMIter(args, word, stats, prons, pron_probs_mod, False) loss_abs = log_like - log_like2 # absolute likelihood loss before normalization # (supposed to be positive, but could be negative near zero because of numerical precision limit). log_delta = math.log(args.delta) thr = -log_delta loss = loss_abs source = src[(word, prons[word][i])] if dianostic_info: print(" set the pron_prob of '{}' whose source is {}, to zero results in {}" " loss in avg. log-likelihood; Num. iters until converging:{}. ".format( prons[word][i], source, loss, num_iters2)) # Compute quality score q_b = loss_abs * / (M_w + beta_s(b)) + alpha_s(b) * log_delta # See Sec. 4.3 and Alg. 1 in the paper. if source == 'P': thr *= args.alpha[0] loss *= float(len(stats[word])) / (float(len(stats[word])) + args.beta[0]) if source == 'G': thr *= args.alpha[1] loss *= float(len(stats[word])) / (float(len(stats[word])) + args.beta[1]) if source == 'R': thr *= args.alpha[2] loss *= float(len(stats[word])) / (float(len(stats[word])) + args.beta[2]) if loss - thr < 0: # loss - thr here is just q_b if dianostic_info: print("Smoothed log-like loss {} is smaller than threshold {} so that the quality" "score {} is negative, adding the pron to the list of candidates to delete" ". ".format(loss, thr, loss-thr)) candidates_to_delete.append((loss-thr, i)) if len(candidates_to_delete) == 0: break candidates_to_delete_sorted = sorted(candidates_to_delete, key=lambda candidates_to_delete: candidates_to_delete[0]) deleted_candidate = candidates_to_delete_sorted[0] active_indexes.remove(deleted_candidate[1]) pron_probs[deleted_candidate[1]] = 0.0 for i in range(len(pron_probs)): if i in active_indexes: pron_probs[i] += 0.01 pron_probs = [s / sum(pron_probs) for s in pron_probs] source = src[(word, prons[word][deleted_candidate[1]])] pron = prons[word][deleted_candidate[1]] soft_count = soft_counts_normalized[deleted_candidate[1]] quality_score = deleted_candidate[0] # This part of diagnostic info provides hints to the user on how to adjust the parameters. if dianostic_info: print("removed pron {}, from source {} with quality score {:.5f}".format( pron, source, quality_score)) if (source == 'P' and soft_count > 0.7 and len(stats[word]) > 5): print("WARNING: alpha_{pd} or beta_{pd} may be too large!" " For the word '{}' whose count is {}, the candidate " " pronunciation from phonetic decoding '{}' with normalized " " soft count {} (out of 1) is rejected. It shouldn't have been" " rejected if alpha_{pd} is smaller than {}".format( word, len(stats[word]), pron, soft_count, -loss / log_delta, -args.alpha[0] * len(stats[word]) + (objf_change + args.beta[0])), file=sys.stderr) if loss_abs > thr: print(" or beta_{pd} is smaller than {}".format( (loss_abs / thr - 1) * len(stats[word])), file=sys.stderr) if (source == 'G' and soft_count > 0.7 and len(stats[word]) > 5): print("WARNING: alpha_{g2p} or beta_{g2p} may be too large!" " For the word '{}' whose count is {}, the candidate " " pronunciation from G2P '{}' with normalized " " soft count {} (out of 1) is rejected. It shouldn't have been" " rejected if alpha_{g2p} is smaller than {} ".format( word, len(stats[word]), pron, soft_count, -loss / log_delta, -args.alpha[1] * len(stats[word]) + (objf_change + args.beta[1])), file=sys.stderr) if loss_abs > thr: print(" or beta_{g2p} is smaller than {}.".format(( loss_abs / thr - 1) * len(stats[word])), file=sys.stderr) deleted_prons.append(deleted_candidate[1]) for i in range(len(prons[word])): if i not in deleted_prons: learned_lexicon[word].add(prons[word][i]) return learned_lexicon def WriteLearnedLexicon(learned_lexicon, file_handle): for word, prons in learned_lexicon.iteritems(): for pron in prons: print('{0} {1}'.format(word, pron), file=file_handle) file_handle.close() def Main(): args = GetArgs() # Read in three lexicon sources, word counts, and pron stats. counts = ReadWordCounts(args.word_counts_file_handle) ref_lexicon = ReadLexicon(args, args.ref_lexicon_handle, counts) g2p_lexicon = ReadLexicon(args, args.g2p_lexicon_handle, counts) pd_lexicon = ReadLexicon(args, args.pd_lexicon_handle, counts) stats, stats_summed = ReadArcStats(args.arc_stats_file_handle) pd_lexicon = FilterPhoneticDecodingLexicon(args, pd_lexicon) # Select prons to construct the learned lexicon. learned_lexicon = SelectPronsGreedy(args, stats, counts, ref_lexicon, g2p_lexicon, pd_lexicon) # Write the learned prons for words out of the ref. vocab into learned_lexicon_oov. WriteLearnedLexicon(learned_lexicon, args.learned_lexicon_handle) if __name__ == "__main__": Main() |