select_prons_greedy.py
18.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
#!/usr/bin/env python
# Copyright 2018 Xiaohui Zhang
# Apache 2.0.
from __future__ import print_function
from collections import defaultdict
import argparse
import sys
import math
def GetArgs():
parser = argparse.ArgumentParser(
description = "Use a greedy framework to select pronunciation candidates"
"from three sources: a reference lexicon, G2P lexicon and phonetic-decoding"
"(PD) lexicon. Basically, this script implements the Alg. 1 in the paper:"
"Acoustic data-driven lexicon learning based on a greedy pronunciation "
"selection framework, by X. Zhang, V. Mahonar, D. Povey and S. Khudanpur,"
"Interspeech 2017. The inputs are an arc-stats file, containing "
"acoustic evidence (tau_{uwb} in the paper) and three source lexicons "
"(phonetic-decoding(PD)/G2P/ref). The outputs is the learned lexicon for"
"all words in the arc_stats (acoustic evidence) file.",
epilog = "See steps/dict/learn_lexicon_greedy.sh for example.")
parser.add_argument("--alpha", type = str, default = "0,0,0",
help = "Scaling factors for the likelihood reduction threshold."
"of three pronunciaiton candidate sources: phonetic-decoding (PD),"
"G2P and reference. The valid range of each dimension is [0, 1], and"
"a large value means we prune pronunciations from this source more"
"aggressively. Setting a dimension to zero means we never want to remove"
"pronunciaiton from that source. See Section 4.3 in the paper for details.")
parser.add_argument("--beta", type = str, default = "0,0,0",
help = "smoothing factors for the likelihood reduction term."
"of three pronunciaiton candidate sources: phonetic-decoding (PD),"
"G2P and reference. The valid range of each dimension is [0, 100], and"
"a large value means we prune pronunciations from this source more"
"aggressively. See Section 4.3 in the paper for details.")
parser.add_argument("--delta", type = float, default = 0.000000001,
help = "Floor value of the pronunciation posterior statistics."
"The valid range is (0, 0.01),"
"See Section 3 in the paper for details.")
parser.add_argument("silence_phones_file", metavar = "<silphone-file>", type = str,
help = "File containing a list of silence phones.")
parser.add_argument("arc_stats_file", metavar = "<arc-stats-file>", type = str,
help = "File containing word-pronunciation statistics obtained from lattices; "
"each line must be <word> <utt-id> <start-frame> <count> <phones>")
parser.add_argument("word_counts_file", metavar = "<counts-file>", type = str,
help = "File containing word counts in acoustic training data; "
"each line must be <word> <count>.")
parser.add_argument("ref_lexicon", metavar = "<reference-lexicon>", type = str,
help = "The reference lexicon (most probably hand-derived)."
"Each line must be <word> <phones>")
parser.add_argument("g2p_lexicon", metavar = "<g2p-expanded-lexicon>", type = str,
help = "Candidate ronouciations from G2P results."
"Each line must be <word> <phones>")
parser.add_argument("pd_lexicon", metavar = "<phonetic-decoding-lexicon>", type = str,
help = "Candidate ronouciations from phonetic decoding results."
"Each line must be <word> <phones>")
parser.add_argument("learned_lexicon", metavar = "<learned-lexicon>", type = str,
help = "Learned lexicon.")
print (' '.join(sys.argv), file=sys.stderr)
args = parser.parse_args()
args = CheckArgs(args)
return args
def CheckArgs(args):
args.silence_phones_file_handle = open(args.silence_phones_file)
if args.arc_stats_file == "-":
args.arc_stats_file_handle = sys.stdin
else:
args.arc_stats_file_handle = open(args.arc_stats_file)
args.word_counts_file_handle = open(args.word_counts_file)
args.ref_lexicon_handle = open(args.ref_lexicon)
args.g2p_lexicon_handle = open(args.g2p_lexicon)
args.pd_lexicon_handle = open(args.pd_lexicon)
args.learned_lexicon_handle = open(args.learned_lexicon, "w")
alpha = args.alpha.strip().split(',')
if len(alpha) is not 3:
raise Exception('Invalid alpha ', args.alpha)
for i in range(0,3):
if float(alpha[i]) < 0 or float(alpha[i]) > 1:
raise Exception('alaph ', alpha[i],
' is invalid, it must be within [0, 1].')
if float(alpha[i]) == 0:
alpha[i] = -1e-3
# The absolute likelihood loss (search for loss_abs) is supposed to be positive.
# But it could be negative near zero because of numerical precision limit.
# In this case, even if alpha is set to be zero, which means we never want to
# remove pronunciation from that source, the quality score (search for q_b)
# could still be negative, which means this pron could be potentially removed.
# To prevent this, we set alpha as a negative value near zero to ensure
# q_b is always positive.
args.alpha = [float(alpha[0]), float(alpha[1]), float(alpha[2])]
print("[alpha_{pd}, alpha_{g2p}, alpha_{ref}] is: ", args.alpha)
exit
beta = args.beta.strip().split(',')
if len(beta) is not 3:
raise Exception('Invalid beta ', args.beta)
for i in range(0,3):
if float(beta[i]) < 0 or float(beta[i]) > 100:
raise Exception('beta ', beta[i],
' is invalid, it must be within [0, 100].')
args.beta = [float(beta[0]), float(beta[1]), float(beta[2])]
print("[beta_{pd}, beta_{g2p}, beta_{ref}] is: ", args.beta)
if args.delta <= 0 or args.delta > 0.1:
raise Exception('delta ', args.delta, ' is invalid, it must be within'
'(0, 0.01).')
print("delta is: ", args.delta)
return args
def ReadArcStats(arc_stats_file_handle):
stats = defaultdict(lambda : defaultdict(dict))
stats_summed = defaultdict(float)
for line in arc_stats_file_handle.readlines():
splits = line.strip().split()
if (len(splits) == 0):
continue
if (len(splits) < 5):
raise Exception('Invalid format of line ' + line
+ ' in ' + arc_stats_file)
utt = splits[1]
start_frame = int(splits[2])
word = splits[0]
count = float(splits[3])
phones = splits[4:]
phones = ' '.join(phones)
stats[word][(utt, start_frame)][phones] = count
stats_summed[(word, phones)] += count
return stats, stats_summed
def ReadWordCounts(word_counts_file_handle):
counts = {}
for line in word_counts_file_handle.readlines():
splits = line.strip().split()
if len(splits) < 2:
raise Exception('Invalid format of line ' + line
+ ' in counts file.')
word = splits[0]
count = int(splits[1])
counts[word] = count
return counts
def ReadLexicon(args, lexicon_file_handle, counts):
# we're skipping any word not in counts (not seen in training data),
# cause we're only learning prons for words who have acoustic examples.
lexicon = defaultdict(set)
for line in lexicon_file_handle.readlines():
splits = line.strip().split()
if len(splits) == 0:
continue
if len(splits) < 2:
raise Exception('Invalid format of line ' + line
+ ' in lexicon file.')
word = splits[0]
if word not in counts:
continue
phones = ' '.join(splits[1:])
lexicon[word].add(phones)
return lexicon
def FilterPhoneticDecodingLexicon(args, pd_lexicon):
# We want to remove all candidates which contain silence phones
silphones = set()
for line in args.silence_phones_file_handle:
silphones.add(line.strip())
rejected_candidates = set()
for word, prons in pd_lexicon.iteritems():
for pron in prons:
for phone in pron.split():
if phone in silphones:
rejected_candidates.add((word, pron))
break
for word, pron in rejected_candidates:
pd_lexicon[word].remove(pron)
return pd_lexicon
# One iteration of Expectation-Maximization computation (Eq. 3-4 in the paper).
def OneEMIter(args, word, stats, prons, pron_probs, debug=False):
prob_acc = [0.0 for i in range(len(prons[word]))]
s = sum(pron_probs)
for i in range(len(pron_probs)):
pron_probs[i] = pron_probs[i] / s
log_like = 0.0
for (utt, start_frame) in stats[word]:
prob = []
soft_counts = []
for i in range(len(prons[word])):
phones = prons[word][i]
soft_count = stats[word][(utt, start_frame)].get(phones, 0)
if soft_count < args.delta:
soft_count = args.delta
soft_counts.append(soft_count)
prob = [i[0] * i[1] for i in zip(soft_counts, pron_probs)]
for i in range(len(prons[word])):
prob_acc[i] += prob[i] / sum(prob)
log_like += math.log(sum(prob))
pron_probs = [1.0 / float(len(stats[word])) * p for p in prob_acc]
log_like = 1.0 / float(len(stats[word])) * log_like
if debug:
print("Log_like of the word: ", log_like, "pron probs: ", pron_probs)
return pron_probs, log_like
def SelectPronsGreedy(args, stats, counts, ref_lexicon, g2p_lexicon, pd_lexicon, dianostic_info=False):
prons = defaultdict(list) # Put all possible prons from three source lexicons into this dictionary
src = {} # Source of each (word, pron) pair: 'P' = phonetic-decoding, 'G' = G2P, 'R' = reference
learned_lexicon = defaultdict(set) # Put all selected prons in this dictionary
for lexicon in ref_lexicon, g2p_lexicon, pd_lexicon:
for word in lexicon:
for pron in lexicon[word]:
prons[word].append(pron)
for word in prons:
for pron in prons[word]:
if word in pd_lexicon and pron in pd_lexicon[word]:
src[(word, pron)] = 'P'
if word in g2p_lexicon and pron in g2p_lexicon[word]:
src[(word, pron)] = 'G'
if word in ref_lexicon and pron in ref_lexicon[word]:
src[(word, pron)] = 'R'
for word in prons:
if word not in stats:
continue
n = len(prons[word])
pron_probs = [1/float(n) for i in range(n)]
if dianostic_info:
print("pronunciations of word '{}': {}".format(word, prons[word]))
active_indexes = set(range(len(prons[word])))
deleted_prons = [] # indexes of prons to be deleted
soft_counts_normalized = []
while len(active_indexes) > 1:
log_like = 1.0
log_like_last = -1.0
num_iters = 0
while abs(log_like - log_like_last) > 1e-7:
num_iters += 1
log_like_last = log_like
pron_probs, log_like = OneEMIter(args, word, stats, prons, pron_probs, False)
if log_like_last == 1.0 and len(soft_counts_normalized) == 0: # the first iteration
soft_counts_normalized = pron_probs
if dianostic_info:
print("Avg.(over all egs) soft counts: {}".format(soft_counts_normalized))
if dianostic_info:
print("\n Log_like after {} iters of EM: {}, estimated pron_probs: {} \n".format(
num_iters, log_like, pron_probs))
candidates_to_delete = []
for i in active_indexes:
pron_probs_mod = [p for p in pron_probs]
pron_probs_mod[i] = 0.0
for j in range(len(pron_probs_mod)):
if j in active_indexes and j != i:
pron_probs_mod[j] += 0.01
pron_probs_mod = [s / sum(pron_probs_mod) for s in pron_probs_mod]
log_like2 = 1.0
log_like2_last = -1.0
num_iters2 = 0
# Running EM until convengence
while abs(log_like2 - log_like2_last) > 0.001 :
num_iters2 += 1
log_like2_last = log_like2
pron_probs_mod, log_like2 = OneEMIter(args, word, stats,
prons, pron_probs_mod, False)
loss_abs = log_like - log_like2 # absolute likelihood loss before normalization
# (supposed to be positive, but could be negative near zero because of numerical precision limit).
log_delta = math.log(args.delta)
thr = -log_delta
loss = loss_abs
source = src[(word, prons[word][i])]
if dianostic_info:
print("\n set the pron_prob of '{}' whose source is {}, to zero results in {}"
" loss in avg. log-likelihood; Num. iters until converging:{}. ".format(
prons[word][i], source, loss, num_iters2))
# Compute quality score q_b = loss_abs * / (M_w + beta_s(b)) + alpha_s(b) * log_delta
# See Sec. 4.3 and Alg. 1 in the paper.
if source == 'P':
thr *= args.alpha[0]
loss *= float(len(stats[word])) / (float(len(stats[word])) + args.beta[0])
if source == 'G':
thr *= args.alpha[1]
loss *= float(len(stats[word])) / (float(len(stats[word])) + args.beta[1])
if source == 'R':
thr *= args.alpha[2]
loss *= float(len(stats[word])) / (float(len(stats[word])) + args.beta[2])
if loss - thr < 0: # loss - thr here is just q_b
if dianostic_info:
print("Smoothed log-like loss {} is smaller than threshold {} so that the quality"
"score {} is negative, adding the pron to the list of candidates to delete"
". ".format(loss, thr, loss-thr))
candidates_to_delete.append((loss-thr, i))
if len(candidates_to_delete) == 0:
break
candidates_to_delete_sorted = sorted(candidates_to_delete,
key=lambda candidates_to_delete: candidates_to_delete[0])
deleted_candidate = candidates_to_delete_sorted[0]
active_indexes.remove(deleted_candidate[1])
pron_probs[deleted_candidate[1]] = 0.0
for i in range(len(pron_probs)):
if i in active_indexes:
pron_probs[i] += 0.01
pron_probs = [s / sum(pron_probs) for s in pron_probs]
source = src[(word, prons[word][deleted_candidate[1]])]
pron = prons[word][deleted_candidate[1]]
soft_count = soft_counts_normalized[deleted_candidate[1]]
quality_score = deleted_candidate[0]
# This part of diagnostic info provides hints to the user on how to adjust the parameters.
if dianostic_info:
print("removed pron {}, from source {} with quality score {:.5f}".format(
pron, source, quality_score))
if (source == 'P' and soft_count > 0.7 and len(stats[word]) > 5):
print("WARNING: alpha_{pd} or beta_{pd} may be too large!"
" For the word '{}' whose count is {}, the candidate "
" pronunciation from phonetic decoding '{}' with normalized "
" soft count {} (out of 1) is rejected. It shouldn't have been"
" rejected if alpha_{pd} is smaller than {}".format(
word, len(stats[word]), pron, soft_count, -loss / log_delta,
-args.alpha[0] * len(stats[word]) + (objf_change + args.beta[0])),
file=sys.stderr)
if loss_abs > thr:
print(" or beta_{pd} is smaller than {}".format(
(loss_abs / thr - 1) * len(stats[word])), file=sys.stderr)
if (source == 'G' and soft_count > 0.7 and len(stats[word]) > 5):
print("WARNING: alpha_{g2p} or beta_{g2p} may be too large!"
" For the word '{}' whose count is {}, the candidate "
" pronunciation from G2P '{}' with normalized "
" soft count {} (out of 1) is rejected. It shouldn't have been"
" rejected if alpha_{g2p} is smaller than {} ".format(
word, len(stats[word]), pron, soft_count, -loss / log_delta,
-args.alpha[1] * len(stats[word]) + (objf_change + args.beta[1])),
file=sys.stderr)
if loss_abs > thr:
print(" or beta_{g2p} is smaller than {}.".format((
loss_abs / thr - 1) * len(stats[word])), file=sys.stderr)
deleted_prons.append(deleted_candidate[1])
for i in range(len(prons[word])):
if i not in deleted_prons:
learned_lexicon[word].add(prons[word][i])
return learned_lexicon
def WriteLearnedLexicon(learned_lexicon, file_handle):
for word, prons in learned_lexicon.iteritems():
for pron in prons:
print('{0} {1}'.format(word, pron), file=file_handle)
file_handle.close()
def Main():
args = GetArgs()
# Read in three lexicon sources, word counts, and pron stats.
counts = ReadWordCounts(args.word_counts_file_handle)
ref_lexicon = ReadLexicon(args, args.ref_lexicon_handle, counts)
g2p_lexicon = ReadLexicon(args, args.g2p_lexicon_handle, counts)
pd_lexicon = ReadLexicon(args, args.pd_lexicon_handle, counts)
stats, stats_summed = ReadArcStats(args.arc_stats_file_handle)
pd_lexicon = FilterPhoneticDecodingLexicon(args, pd_lexicon)
# Select prons to construct the learned lexicon.
learned_lexicon = SelectPronsGreedy(args, stats, counts, ref_lexicon, g2p_lexicon, pd_lexicon)
# Write the learned prons for words out of the ref. vocab into learned_lexicon_oov.
WriteLearnedLexicon(learned_lexicon, args.learned_lexicon_handle)
if __name__ == "__main__":
Main()