Blame view
egs/wsj/s5/steps/nnet/ivector/extract_ivectors.sh
8.94 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
#!/bin/bash # Copyright 2013 Daniel Povey # 2016 Brno University of Technology (author: Karel Vesely) # Apache 2.0. # This script computes iVectors in the same format as extract_ivectors_online.sh, # except that they are actually not really computed online, they are first computed # per speaker and just duplicated many times. # This is mainly intended for use in decoding, where you want the best possible # quality of iVectors. # # This setup also makes it possible to use a previous decoding or alignment, to # down-weight silence in the stats (default is --silence-weight 0.0). # # This is for when you use the "online-decoding" setup in an offline task, and # you want the best possible results. # Begin configuration section. nj=30 cmd="run.pl" stage=0 num_gselect=5 # Gaussian-selection using diagonal model: number of Gaussians to select min_post=0.025 # Minimum posterior to use (posteriors below this are pruned out) posterior_scale=0.1 # Scale on the acoustic posteriors, intended to account for # inter-frame correlations. Making this small during iVector # extraction is equivalent to scaling up the prior, and will # will tend to produce smaller iVectors where data-counts are # small. It's not so important that this match the value # used when training the iVector extractor, but more important # that this match the value used when you do real online decoding # with the neural nets trained with these iVectors. max_count=100 # Interpret this as a number of frames times posterior scale... # this config ensures that once the count exceeds this (i.e. # 1000 frames, or 10 seconds, by default), we start to scale # down the stats, accentuating the prior term. This seems quite # important for some reason. silence_weight=0.0 acwt=0.1 # used if input is a decode dir, to get best path from lattices. mdl=final # change this if decode directory did not have ../final.mdl present. # End configuration section. echo "$0 $@" # Print the command line for logging if [ -f path.sh ]; then . ./path.sh; fi . parse_options.sh || exit 1; if [ $# != 4 ] && [ $# != 5 ]; then echo "Usage: $0 [options] <data> <lang> <extractor-dir> [<alignment-dir>|<decode-dir>|<weights-archive>] <ivector-dir>" echo " e.g.: $0 data/test exp/nnet2_online/extractor exp/tri3/decode_test exp/nnet2_online/ivectors_test" echo "main options (for others, see top of script file)" echo " --config <config-file> # config containing options" echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs." echo " --nj <n|10> # Number of jobs (also see num-processes and num-threads)" echo " # Ignored if <alignment-dir> or <decode-dir> supplied." echo " --stage <stage|0> # To control partial reruns" echo " --num-gselect <n|5> # Number of Gaussians to select using" echo " # diagonal model." echo " --min-post <float;default=0.025> # Pruning threshold for posteriors" echo " --ivector-period <int;default=10> # How often to extract an iVector (frames)" echo " --posterior-scale <float;default=0.1> # Scale on posteriors in iVector extraction; " echo " # affects strength of prior term." exit 1; fi set -euxo pipefail if [ $# -eq 4 ]; then data=$1 lang=$2 srcdir=$3 dir=$4 else # 5 arguments data=$1 lang=$2 srcdir=$3 ali_or_decode_dir=$4 dir=$5 fi for f in $data/feats.scp $srcdir/final.ie $srcdir/final.dubm $lang/phones.txt; do [ ! -f $f ] && echo "$0: No such file $f" && exit 1; done mkdir -p $dir/log silphonelist=$(cat $lang/phones/silence.csl) || exit 1; if [ ! -z "$ali_or_decode_dir" ]; then if [ -f $ali_or_decode_dir/ali.1.gz ]; then if [ ! -f $ali_or_decode_dir/${mdl}.mdl ]; then echo "$0: expected $ali_or_decode_dir/${mdl}.mdl to exist." exit 1; fi nj_orig=$(cat $ali_or_decode_dir/num_jobs) || exit 1; if [ $stage -le 0 ]; then rm $dir/weights.*.gz 2>/dev/null || true $cmd JOB=1:$nj_orig $dir/log/ali_to_post.JOB.log \ gunzip -c $ali_or_decode_dir/ali.JOB.gz \| \ ali-to-post ark:- ark:- \| \ weight-silence-post $silence_weight $silphonelist $ali_or_decode_dir/final.mdl ark:- ark:- \| \ post-to-weights ark:- "ark:|gzip -c >$dir/weights.JOB.gz" || exit 1; # put all the weights in one archive. for j in $(seq $nj_orig); do gunzip -c $dir/weights.$j.gz; done | gzip -c >$dir/weights.gz || exit 1; rm $dir/weights.*.gz || exit 1; fi elif [ -f $ali_or_decode_dir/lat.1.gz ]; then nj_orig=$(cat $ali_or_decode_dir/num_jobs) || exit 1; if [ ! -f $ali_or_decode_dir/../${mdl}.mdl ]; then echo "$0: expected $ali_or_decode_dir/../${mdl}.mdl to exist." exit 1; fi if [ $stage -le 0 ]; then rm $dir/weights.*.gz 2>/dev/null || true $cmd JOB=1:$nj_orig $dir/log/lat_to_post.JOB.log \ lattice-best-path --acoustic-scale=$acwt "ark:gunzip -c $ali_or_decode_dir/lat.JOB.gz|" ark:/dev/null ark:- \| \ ali-to-post ark:- ark:- \| \ weight-silence-post $silence_weight $silphonelist $ali_or_decode_dir/../${mdl}.mdl ark:- ark:- \| \ post-to-weights ark:- "ark:|gzip -c >$dir/weights.JOB.gz" || exit 1; # put all the weights in one archive. for j in $(seq $nj_orig); do gunzip -c $dir/weights.$j.gz; done | gzip -c >$dir/weights.gz || exit 1; rm $dir/weights.*.gz || exit 1; fi elif [ -f $ali_or_decode_dir ] && gunzip -c $ali_or_decode_dir >/dev/null; then cp $ali_or_decode_dir $dir/weights.gz || exit 1; else echo "$0: expected ali.1.gz or lat.1.gz to exist in $ali_or_decode_dir"; exit 1; fi fi sdata=$data/split$nj; utils/split_data.sh $data $nj || exit 1; gmm_feats="ark,s,cs:copy-feats scp:$sdata/JOB/feats.scp ark:- |" feats="$gmm_feats" # (here originally was the sub-speaker hack), this_sdata=$sdata # Per-speaker i-vectors, if [ $stage -le 2 ]; then if [ ! -z "$ali_or_decode_dir" ]; then $cmd JOB=1:$nj $dir/log/extract_ivectors.JOB.log \ gmm-global-get-post --n=$num_gselect --min-post=$min_post $srcdir/final.dubm "$gmm_feats" ark:- \| \ weight-post ark:- "ark,s,cs:gunzip -c $dir/weights.gz|" ark:- \| \ ivector-extract --acoustic-weight=$posterior_scale --compute-objf-change=true \ --max-count=$max_count --spk2utt=ark:$this_sdata/JOB/spk2utt \ $srcdir/final.ie "$feats" ark,s,cs:- ark:$dir/ivectors_spk.JOB.ark else $cmd JOB=1:$nj $dir/log/extract_ivectors.JOB.log \ gmm-global-get-post --n=$num_gselect --min-post=$min_post $srcdir/final.dubm "$gmm_feats" ark:- \| \ ivector-extract --acoustic-weight=$posterior_scale --compute-objf-change=true \ --max-count=$max_count --spk2utt=ark:$this_sdata/JOB/spk2utt \ $srcdir/final.ie "$feats" ark,s,cs:- ark:$dir/ivectors_spk.JOB.ark fi fi # Per-utterance i-vectors, if [ $stage -le 3 ]; then if [ ! -z "$ali_or_decode_dir" ]; then $cmd JOB=1:$nj $dir/log/extract_ivectors_utt.JOB.log \ gmm-global-get-post --n=$num_gselect --min-post=$min_post $srcdir/final.dubm "$gmm_feats" ark:- \| \ weight-post ark:- "ark,s,cs:gunzip -c $dir/weights.gz|" ark:- \| \ ivector-extract --acoustic-weight=$posterior_scale --compute-objf-change=true --max-count=$max_count \ $srcdir/final.ie "$feats" ark,s,cs:- ark:$dir/ivectors_utt.JOB.ark else $cmd JOB=1:$nj $dir/log/extract_ivectors_utt.JOB.log \ gmm-global-get-post --n=$num_gselect --min-post=$min_post $srcdir/final.dubm "$gmm_feats" ark:- \| \ ivector-extract --acoustic-weight=$posterior_scale --compute-objf-change=true --max-count=$max_count \ $srcdir/final.ie "$feats" ark,s,cs:- ark:$dir/ivectors_utt.JOB.ark fi fi absdir=$(utils/make_absolute.sh $dir) if [ $stage -le 4 ]; then echo "$0: merging iVectors across jobs" copy-vector "ark:cat $dir/ivectors_spk.*.ark |" ark,scp:$absdir/ivectors_spk.ark,$dir/ivectors_spk.scp rm $dir/ivectors_spk.*.ark copy-vector "ark:cat $dir/ivectors_utt.*.ark |" ark,scp:$absdir/ivectors_utt.ark,$dir/ivectors_utt.scp rm $dir/ivectors_utt.*.ark fi # duplicate the `speaker' i-vector to all `utterances' of that speaker, if [ $stage -le 5 ]; then # filter utt2spk (remove speakers with no iVector), awk -v ivec_spk=$dir/ivectors_spk.scp \ 'BEGIN{ while(getline < ivec_spk) { spk_has_ivec[$1] = 1; }} { spk=$2; if(spk_has_ivec[spk]) { print $0 }}' \ $data/utt2spk >$dir/utt2spk.filt # expand the list of i-vectors, utils/apply_map.pl -f 2 $dir/ivectors_spk.scp <$dir/utt2spk.filt >$dir/ivectors_spk-as-utt.scp fi echo "$0: done extracting iVectors (per-speaker, per-sentence) into '$dir'" |