extract_ivectors.sh
8.94 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#!/bin/bash
# Copyright 2013 Daniel Povey
# 2016 Brno University of Technology (author: Karel Vesely)
# Apache 2.0.
# This script computes iVectors in the same format as extract_ivectors_online.sh,
# except that they are actually not really computed online, they are first computed
# per speaker and just duplicated many times.
# This is mainly intended for use in decoding, where you want the best possible
# quality of iVectors.
#
# This setup also makes it possible to use a previous decoding or alignment, to
# down-weight silence in the stats (default is --silence-weight 0.0).
#
# This is for when you use the "online-decoding" setup in an offline task, and
# you want the best possible results.
# Begin configuration section.
nj=30
cmd="run.pl"
stage=0
num_gselect=5 # Gaussian-selection using diagonal model: number of Gaussians to select
min_post=0.025 # Minimum posterior to use (posteriors below this are pruned out)
posterior_scale=0.1 # Scale on the acoustic posteriors, intended to account for
# inter-frame correlations. Making this small during iVector
# extraction is equivalent to scaling up the prior, and will
# will tend to produce smaller iVectors where data-counts are
# small. It's not so important that this match the value
# used when training the iVector extractor, but more important
# that this match the value used when you do real online decoding
# with the neural nets trained with these iVectors.
max_count=100 # Interpret this as a number of frames times posterior scale...
# this config ensures that once the count exceeds this (i.e.
# 1000 frames, or 10 seconds, by default), we start to scale
# down the stats, accentuating the prior term. This seems quite
# important for some reason.
silence_weight=0.0
acwt=0.1 # used if input is a decode dir, to get best path from lattices.
mdl=final # change this if decode directory did not have ../final.mdl present.
# End configuration section.
echo "$0 $@" # Print the command line for logging
if [ -f path.sh ]; then . ./path.sh; fi
. parse_options.sh || exit 1;
if [ $# != 4 ] && [ $# != 5 ]; then
echo "Usage: $0 [options] <data> <lang> <extractor-dir> [<alignment-dir>|<decode-dir>|<weights-archive>] <ivector-dir>"
echo " e.g.: $0 data/test exp/nnet2_online/extractor exp/tri3/decode_test exp/nnet2_online/ivectors_test"
echo "main options (for others, see top of script file)"
echo " --config <config-file> # config containing options"
echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs."
echo " --nj <n|10> # Number of jobs (also see num-processes and num-threads)"
echo " # Ignored if <alignment-dir> or <decode-dir> supplied."
echo " --stage <stage|0> # To control partial reruns"
echo " --num-gselect <n|5> # Number of Gaussians to select using"
echo " # diagonal model."
echo " --min-post <float;default=0.025> # Pruning threshold for posteriors"
echo " --ivector-period <int;default=10> # How often to extract an iVector (frames)"
echo " --posterior-scale <float;default=0.1> # Scale on posteriors in iVector extraction; "
echo " # affects strength of prior term."
exit 1;
fi
set -euxo pipefail
if [ $# -eq 4 ]; then
data=$1
lang=$2
srcdir=$3
dir=$4
else # 5 arguments
data=$1
lang=$2
srcdir=$3
ali_or_decode_dir=$4
dir=$5
fi
for f in $data/feats.scp $srcdir/final.ie $srcdir/final.dubm $lang/phones.txt; do
[ ! -f $f ] && echo "$0: No such file $f" && exit 1;
done
mkdir -p $dir/log
silphonelist=$(cat $lang/phones/silence.csl) || exit 1;
if [ ! -z "$ali_or_decode_dir" ]; then
if [ -f $ali_or_decode_dir/ali.1.gz ]; then
if [ ! -f $ali_or_decode_dir/${mdl}.mdl ]; then
echo "$0: expected $ali_or_decode_dir/${mdl}.mdl to exist."
exit 1;
fi
nj_orig=$(cat $ali_or_decode_dir/num_jobs) || exit 1;
if [ $stage -le 0 ]; then
rm $dir/weights.*.gz 2>/dev/null || true
$cmd JOB=1:$nj_orig $dir/log/ali_to_post.JOB.log \
gunzip -c $ali_or_decode_dir/ali.JOB.gz \| \
ali-to-post ark:- ark:- \| \
weight-silence-post $silence_weight $silphonelist $ali_or_decode_dir/final.mdl ark:- ark:- \| \
post-to-weights ark:- "ark:|gzip -c >$dir/weights.JOB.gz" || exit 1;
# put all the weights in one archive.
for j in $(seq $nj_orig); do gunzip -c $dir/weights.$j.gz; done | gzip -c >$dir/weights.gz || exit 1;
rm $dir/weights.*.gz || exit 1;
fi
elif [ -f $ali_or_decode_dir/lat.1.gz ]; then
nj_orig=$(cat $ali_or_decode_dir/num_jobs) || exit 1;
if [ ! -f $ali_or_decode_dir/../${mdl}.mdl ]; then
echo "$0: expected $ali_or_decode_dir/../${mdl}.mdl to exist."
exit 1;
fi
if [ $stage -le 0 ]; then
rm $dir/weights.*.gz 2>/dev/null || true
$cmd JOB=1:$nj_orig $dir/log/lat_to_post.JOB.log \
lattice-best-path --acoustic-scale=$acwt "ark:gunzip -c $ali_or_decode_dir/lat.JOB.gz|" ark:/dev/null ark:- \| \
ali-to-post ark:- ark:- \| \
weight-silence-post $silence_weight $silphonelist $ali_or_decode_dir/../${mdl}.mdl ark:- ark:- \| \
post-to-weights ark:- "ark:|gzip -c >$dir/weights.JOB.gz" || exit 1;
# put all the weights in one archive.
for j in $(seq $nj_orig); do gunzip -c $dir/weights.$j.gz; done | gzip -c >$dir/weights.gz || exit 1;
rm $dir/weights.*.gz || exit 1;
fi
elif [ -f $ali_or_decode_dir ] && gunzip -c $ali_or_decode_dir >/dev/null; then
cp $ali_or_decode_dir $dir/weights.gz || exit 1;
else
echo "$0: expected ali.1.gz or lat.1.gz to exist in $ali_or_decode_dir";
exit 1;
fi
fi
sdata=$data/split$nj;
utils/split_data.sh $data $nj || exit 1;
gmm_feats="ark,s,cs:copy-feats scp:$sdata/JOB/feats.scp ark:- |"
feats="$gmm_feats"
# (here originally was the sub-speaker hack),
this_sdata=$sdata
# Per-speaker i-vectors,
if [ $stage -le 2 ]; then
if [ ! -z "$ali_or_decode_dir" ]; then
$cmd JOB=1:$nj $dir/log/extract_ivectors.JOB.log \
gmm-global-get-post --n=$num_gselect --min-post=$min_post $srcdir/final.dubm "$gmm_feats" ark:- \| \
weight-post ark:- "ark,s,cs:gunzip -c $dir/weights.gz|" ark:- \| \
ivector-extract --acoustic-weight=$posterior_scale --compute-objf-change=true \
--max-count=$max_count --spk2utt=ark:$this_sdata/JOB/spk2utt \
$srcdir/final.ie "$feats" ark,s,cs:- ark:$dir/ivectors_spk.JOB.ark
else
$cmd JOB=1:$nj $dir/log/extract_ivectors.JOB.log \
gmm-global-get-post --n=$num_gselect --min-post=$min_post $srcdir/final.dubm "$gmm_feats" ark:- \| \
ivector-extract --acoustic-weight=$posterior_scale --compute-objf-change=true \
--max-count=$max_count --spk2utt=ark:$this_sdata/JOB/spk2utt \
$srcdir/final.ie "$feats" ark,s,cs:- ark:$dir/ivectors_spk.JOB.ark
fi
fi
# Per-utterance i-vectors,
if [ $stage -le 3 ]; then
if [ ! -z "$ali_or_decode_dir" ]; then
$cmd JOB=1:$nj $dir/log/extract_ivectors_utt.JOB.log \
gmm-global-get-post --n=$num_gselect --min-post=$min_post $srcdir/final.dubm "$gmm_feats" ark:- \| \
weight-post ark:- "ark,s,cs:gunzip -c $dir/weights.gz|" ark:- \| \
ivector-extract --acoustic-weight=$posterior_scale --compute-objf-change=true --max-count=$max_count \
$srcdir/final.ie "$feats" ark,s,cs:- ark:$dir/ivectors_utt.JOB.ark
else
$cmd JOB=1:$nj $dir/log/extract_ivectors_utt.JOB.log \
gmm-global-get-post --n=$num_gselect --min-post=$min_post $srcdir/final.dubm "$gmm_feats" ark:- \| \
ivector-extract --acoustic-weight=$posterior_scale --compute-objf-change=true --max-count=$max_count \
$srcdir/final.ie "$feats" ark,s,cs:- ark:$dir/ivectors_utt.JOB.ark
fi
fi
absdir=$(utils/make_absolute.sh $dir)
if [ $stage -le 4 ]; then
echo "$0: merging iVectors across jobs"
copy-vector "ark:cat $dir/ivectors_spk.*.ark |" ark,scp:$absdir/ivectors_spk.ark,$dir/ivectors_spk.scp
rm $dir/ivectors_spk.*.ark
copy-vector "ark:cat $dir/ivectors_utt.*.ark |" ark,scp:$absdir/ivectors_utt.ark,$dir/ivectors_utt.scp
rm $dir/ivectors_utt.*.ark
fi
# duplicate the `speaker' i-vector to all `utterances' of that speaker,
if [ $stage -le 5 ]; then
# filter utt2spk (remove speakers with no iVector),
awk -v ivec_spk=$dir/ivectors_spk.scp \
'BEGIN{ while(getline < ivec_spk) { spk_has_ivec[$1] = 1; }} { spk=$2; if(spk_has_ivec[spk]) { print $0 }}' \
$data/utt2spk >$dir/utt2spk.filt
# expand the list of i-vectors,
utils/apply_map.pl -f 2 $dir/ivectors_spk.scp <$dir/utt2spk.filt >$dir/ivectors_spk-as-utt.scp
fi
echo "$0: done extracting iVectors (per-speaker, per-sentence) into '$dir'"