Blame view
egs/wsj/s5/steps/nnet2/update_nnet.sh
12.2 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
#!/bin/bash # Copyright 2012 Johns Hopkins University (Author: Daniel Povey). # 2013 Xiaohui Zhang # 2013 Guoguo Chen # 2013 Johns Hopkins University (Author: Jan Trmal) # 2013 Vimal Manohar # Apache 2.0. # This script updates an existing neural network model without initializing it. # Begin configuration section. cmd=run.pl num_epochs=20 # Number of epochs during which we reduce # the learning rate; number of iteration is worked out from this. num_iters_final=20 # Maximum number of final iterations to give to the # optimization over the validation set. learning_rates="0.0008:0.0008:0.0008:0" combine_regularizer=1.0e-14 # Small regularizer so that parameters won't go crazy. minibatch_size=128 # by default use a smallish minibatch size for neural net # training; this controls instability which would otherwise # be a problem with multi-threaded update. Note: it also # interacts with the "preconditioned" update which generally # works better with larger minibatch size, so it's not # completely cost free. samples_per_iter=200000 # each iteration of training, see this many samples # per job. This option is passed to get_egs.sh num_jobs_nnet=16 # Number of neural net jobs to run in parallel. This option # is passed to get_egs.sh. get_egs_stage=0 shuffle_buffer_size=5000 # This "buffer_size" variable controls randomization of the samples # on each iter. You could set it to 0 or to a large value for complete # randomization, but this would both consume memory and cause spikes in # disk I/O. Smaller is easier on disk and memory but less random. It's # not a huge deal though, as samples are anyway randomized right at the start. stage=-5 io_opts="--max-jobs-run 5" # for jobs with a lot of I/O, limits the number running at one time. These don't splice_width=4 # meaning +- 4 frames on each side for second LDA randprune=4.0 # speeds up LDA. alpha=4.0 max_change=10.0 mix_up=0 # Number of components to mix up to (should be > #tree leaves, if # specified.) num_threads=16 parallel_opts="--num-threads 16 --mem 1G" # by default we use 16 threads; this lets the queue know. # note: parallel_opts doesn't automatically get adjusted if you adjust num-threads. cleanup=false egs_dir= egs_opts= transform_dir= # If supplied, overrides alidir # End configuration section. echo "$0 $@" # Print the command line for logging if [ -f path.sh ]; then . ./path.sh; fi . parse_options.sh || exit 1; if [ $# != 5 ]; then echo "Usage: $0 [opts] <data> <lang> <ali-dir> <model-dir> <exp-dir>" echo " e.g.: $0 data/train data/lang exp/tri3_ali exp/tri4_nnet exp/tri4b_nnet" echo "See also the more recent script train_more.sh which requires the egs" echo "directory." echo "" echo "Main options (for others, see top of script file)" echo " --config <config-file> # config file containing options" echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs." echo " --num-epochs <#epochs|15> # Number of epochs of main training" echo " # while reducing learning rate (determines #iterations, together" echo " # with --samples-per-iter and --num-jobs-nnet)" echo " --num-jobs-nnet <num-jobs|8> # Number of parallel jobs to use for main neural net" echo " # training (will affect results as well as speed; try 8, 16)" echo " # Note: if you increase this, you may want to also increase" echo " # the learning rate." echo " --num-threads <num-threads|16> # Number of parallel threads per job (will affect results" echo " # as well as speed; may interact with batch size; if you increase" echo " # this, you may want to decrease the batch size." echo " --parallel-opts <opts|\"--num-threads 16 --mem 1G\"> # extra options to pass to e.g. queue.pl for processes that" echo " # use multiple threads... " echo " --io-opts <opts|\"--max-jobs-run 10\"> # Options given to e.g. queue.pl for jobs that do a lot of I/O." echo " --minibatch-size <minibatch-size|128> # Size of minibatch to process (note: product with --num-threads" echo " # should not get too large, e.g. >2k)." echo " --samples-per-iter <#samples|400000> # Number of samples of data to process per iteration, per" echo " # process." echo " --splice-width <width|4> # Number of frames on each side to append for feature input" echo " # (note: we splice processed, typically 40-dimensional frames" echo " --num-iters-final <#iters|10> # Number of final iterations to give to nnet-combine-fast to " echo " # interpolate parameters (the weights are learned with a validation set)" echo " --num-utts-subset <#utts|300> # Number of utterances in subsets used for validation and diagnostics" echo " # (the validation subset is held out from training)" echo " --num-frames-diagnostic <#frames|4000> # Number of frames used in computing (train,valid) diagnostics" echo " --num-valid-frames-combine <#frames|10000> # Number of frames used in getting combination weights at the" echo " # very end." echo " --stage <stage|-9> # Used to run a partially-completed training process from somewhere in" echo " # the middle." echo " --transform-dir # Directory with fMLLR transforms. Overrides alidir if provided." exit 1; fi data=$1 lang=$2 alidir=$3 sdir=$4 dir=$5 # Check some files. for f in $data/feats.scp $lang/L.fst $alidir/ali.1.gz $alidir/final.mdl $alidir/tree; do [ ! -f $f ] && echo "$0: no such file $f" && exit 1; done # Set some variables. num_leaves=`gmm-info $alidir/final.mdl 2>/dev/null | awk '/number of pdfs/{print $NF}'` || exit 1; nj=`cat $alidir/num_jobs` || exit 1; # number of jobs in alignment dir... # in this dir we'll have just one job. sdata=$data/split$nj utils/split_data.sh $data $nj mkdir -p $dir/log echo $nj > $dir/num_jobs splice_opts=`cat $alidir/splice_opts 2>/dev/null` cp $alidir/splice_opts $dir 2>/dev/null cp $alidir/tree $dir utils/lang/check_phones_compatible.sh $lang/phones.txt $alidir/phones.txt || exit 1; utils/lang/check_phones_compatible.sh $lang/phones.txt $sdir/phones.txt || exit 1; cp $lang/phones.txt $dir || exit 1; [ -z "$transform_dir" ] && transform_dir=$alidir if [ $stage -le -3 ] && [ -z "$egs_dir" ]; then echo "$0: calling get_egs.sh" steps/nnet2/get_egs.sh --samples-per-iter $samples_per_iter --num-jobs-nnet $num_jobs_nnet \ --splice-width $splice_width --stage $get_egs_stage --cmd "$cmd" $egs_opts --io-opts "$io_opts" --transform-dir $transform_dir \ $data $lang $alidir $dir || exit 1; fi if [ -z $egs_dir ]; then egs_dir=$dir/egs fi iters_per_epoch=`cat $egs_dir/iters_per_epoch` || exit 1; ! [ $num_jobs_nnet -eq `cat $egs_dir/num_jobs_nnet` ] && \ echo "$0: Warning: using --num-jobs-nnet=`cat $egs_dir/num_jobs_nnet` from $egs_dir" num_jobs_nnet=`cat $egs_dir/num_jobs_nnet` || exit 1; if [ $stage -le -2 ]; then echo "$0: using existing neural net"; source_model=$sdir/final.mdl nnet-am-copy --learning-rates=${learning_rates} $source_model $dir/0.mdl fi num_iters=$[$num_epochs * $iters_per_epoch]; echo "$0: Will train for $num_epochs epochs, equalling $num_iters iterations" if [ $num_threads -eq 1 ]; then train_suffix="-simple" # this enables us to use GPU code if # we have just one thread. else train_suffix="-parallel --num-threads=$num_threads" fi x=0 while [ $x -lt $num_iters ]; do if [ $x -ge 0 ] && [ $stage -le $x ]; then # Set off jobs doing some diagnostics, in the background. $cmd $dir/log/compute_prob_valid.$x.log \ nnet-compute-prob $dir/$x.mdl ark:$egs_dir/valid_diagnostic.egs & $cmd $dir/log/compute_prob_train.$x.log \ nnet-compute-prob $dir/$x.mdl ark:$egs_dir/train_diagnostic.egs & if [ $x -gt 0 ] ; then $cmd $dir/log/progress.$x.log \ nnet-show-progress --use-gpu=no $dir/$[$x-1].mdl $dir/$x.mdl ark:$egs_dir/train_diagnostic.egs & fi echo "Training neural net (pass $x)" mdl=$dir/$x.mdl $cmd $parallel_opts JOB=1:$num_jobs_nnet $dir/log/train.$x.JOB.log \ nnet-shuffle-egs --buffer-size=$shuffle_buffer_size --srand=$x \ ark:$egs_dir/egs.JOB.$[$x%$iters_per_epoch].ark ark:- \| \ nnet-train$train_suffix \ --minibatch-size=$minibatch_size --srand=$x "$mdl" \ ark:- $dir/$[$x+1].JOB.mdl \ || exit 1; nnets_list= for n in `seq 1 $num_jobs_nnet`; do nnets_list="$nnets_list $dir/$[$x+1].$n.mdl" done $cmd $dir/log/average.$x.log \ nnet-am-average $nnets_list $dir/$[$x+1].mdl || exit 1; rm $nnets_list fi x=$[$x+1] done # Now do combination. # At the end, final.mdl will be a combination of the last e.g. 10 models. nnets_list=() if [ $num_iters_final -gt $num_iters ]; then echo "Setting num_iters_final=$num_iters" fi start=$[$num_iters-$num_iters_final+1] for x in `seq $start $num_iters`; do idx=$[$x-$start] nnets_list[$idx]=$dir/$x.mdl # "nnet-am-copy --remove-dropout=true $dir/$x.mdl - |" done if [ $stage -le $num_iters ]; then # Below, use --use-gpu=no to disable nnet-combine-fast from using a GPU, as # if there are many models it can give out-of-memory error; set num-threads to 8 # to speed it up (this isn't ideal...) this_num_threads=$num_threads [ $this_num_threads -lt 8 ] && this_num_threads=8 num_egs=`nnet-copy-egs ark:$egs_dir/combine.egs ark:/dev/null 2>&1 | tail -n 1 | awk '{print $NF}'` mb=$[($num_egs+$this_num_threads-1)/$this_num_threads] [ $mb -gt 512 ] && mb=512 # Setting --initial-model to a large value makes it initialize the combination # with the average of all the models. It's important not to start with a # single model, or, due to the invariance to scaling that these nonlinearities # give us, we get zero diagonal entries in the fisher matrix that # nnet-combine-fast uses for scaling, which after flooring and inversion, has # the effect that the initial model chosen gets much higher learning rates # than the others. This prevents the optimization from working well. $cmd $parallel_opts $dir/log/combine.log \ nnet-combine-fast --initial-model=100000 --num-lbfgs-iters=40 --use-gpu=no \ --num-threads=$this_num_threads --regularizer=$combine_regularizer \ --verbose=3 --minibatch-size=$mb "${nnets_list[@]}" ark:$egs_dir/combine.egs \ $dir/final.mdl || exit 1; fi # Compute the probability of the final, combined model with # the same subset we used for the previous compute_probs, as the # different subsets will lead to different probs. $cmd $dir/log/compute_prob_valid.final.log \ nnet-compute-prob $dir/final.mdl ark:$egs_dir/valid_diagnostic.egs & $cmd $dir/log/compute_prob_train.final.log \ nnet-compute-prob $dir/final.mdl ark:$egs_dir/train_diagnostic.egs & sleep 2 echo Done if $cleanup; then echo Cleaning up data if [ $egs_dir == "$dir/egs" ]; then echo Removing training examples steps/nnet2/remove_egs.sh $dir/egs fi echo Removing most of the models for x in `seq 0 $num_iters`; do if [ $[$x%10] -ne 0 ] && [ $x -lt $[$num_iters-$num_iters_final+1] ]; then # delete all but every 10th model; don't delete the ones which combine to form the final model. rm $dir/$x.mdl fi done fi |