update_nnet.sh
12.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
#!/bin/bash
# Copyright 2012 Johns Hopkins University (Author: Daniel Povey).
# 2013 Xiaohui Zhang
# 2013 Guoguo Chen
# 2013 Johns Hopkins University (Author: Jan Trmal)
# 2013 Vimal Manohar
# Apache 2.0.
# This script updates an existing neural network model without initializing it.
# Begin configuration section.
cmd=run.pl
num_epochs=20 # Number of epochs during which we reduce
# the learning rate; number of iteration is worked out from this.
num_iters_final=20 # Maximum number of final iterations to give to the
# optimization over the validation set.
learning_rates="0.0008:0.0008:0.0008:0"
combine_regularizer=1.0e-14 # Small regularizer so that parameters won't go crazy.
minibatch_size=128 # by default use a smallish minibatch size for neural net
# training; this controls instability which would otherwise
# be a problem with multi-threaded update. Note: it also
# interacts with the "preconditioned" update which generally
# works better with larger minibatch size, so it's not
# completely cost free.
samples_per_iter=200000 # each iteration of training, see this many samples
# per job. This option is passed to get_egs.sh
num_jobs_nnet=16 # Number of neural net jobs to run in parallel. This option
# is passed to get_egs.sh.
get_egs_stage=0
shuffle_buffer_size=5000 # This "buffer_size" variable controls randomization of the samples
# on each iter. You could set it to 0 or to a large value for complete
# randomization, but this would both consume memory and cause spikes in
# disk I/O. Smaller is easier on disk and memory but less random. It's
# not a huge deal though, as samples are anyway randomized right at the start.
stage=-5
io_opts="--max-jobs-run 5" # for jobs with a lot of I/O, limits the number running at one time. These don't
splice_width=4 # meaning +- 4 frames on each side for second LDA
randprune=4.0 # speeds up LDA.
alpha=4.0
max_change=10.0
mix_up=0 # Number of components to mix up to (should be > #tree leaves, if
# specified.)
num_threads=16
parallel_opts="--num-threads 16 --mem 1G" # by default we use 16 threads; this lets the queue know.
# note: parallel_opts doesn't automatically get adjusted if you adjust num-threads.
cleanup=false
egs_dir=
egs_opts=
transform_dir= # If supplied, overrides alidir
# End configuration section.
echo "$0 $@" # Print the command line for logging
if [ -f path.sh ]; then . ./path.sh; fi
. parse_options.sh || exit 1;
if [ $# != 5 ]; then
echo "Usage: $0 [opts] <data> <lang> <ali-dir> <model-dir> <exp-dir>"
echo " e.g.: $0 data/train data/lang exp/tri3_ali exp/tri4_nnet exp/tri4b_nnet"
echo "See also the more recent script train_more.sh which requires the egs"
echo "directory."
echo ""
echo "Main options (for others, see top of script file)"
echo " --config <config-file> # config file containing options"
echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs."
echo " --num-epochs <#epochs|15> # Number of epochs of main training"
echo " # while reducing learning rate (determines #iterations, together"
echo " # with --samples-per-iter and --num-jobs-nnet)"
echo " --num-jobs-nnet <num-jobs|8> # Number of parallel jobs to use for main neural net"
echo " # training (will affect results as well as speed; try 8, 16)"
echo " # Note: if you increase this, you may want to also increase"
echo " # the learning rate."
echo " --num-threads <num-threads|16> # Number of parallel threads per job (will affect results"
echo " # as well as speed; may interact with batch size; if you increase"
echo " # this, you may want to decrease the batch size."
echo " --parallel-opts <opts|\"--num-threads 16 --mem 1G\"> # extra options to pass to e.g. queue.pl for processes that"
echo " # use multiple threads... "
echo " --io-opts <opts|\"--max-jobs-run 10\"> # Options given to e.g. queue.pl for jobs that do a lot of I/O."
echo " --minibatch-size <minibatch-size|128> # Size of minibatch to process (note: product with --num-threads"
echo " # should not get too large, e.g. >2k)."
echo " --samples-per-iter <#samples|400000> # Number of samples of data to process per iteration, per"
echo " # process."
echo " --splice-width <width|4> # Number of frames on each side to append for feature input"
echo " # (note: we splice processed, typically 40-dimensional frames"
echo " --num-iters-final <#iters|10> # Number of final iterations to give to nnet-combine-fast to "
echo " # interpolate parameters (the weights are learned with a validation set)"
echo " --num-utts-subset <#utts|300> # Number of utterances in subsets used for validation and diagnostics"
echo " # (the validation subset is held out from training)"
echo " --num-frames-diagnostic <#frames|4000> # Number of frames used in computing (train,valid) diagnostics"
echo " --num-valid-frames-combine <#frames|10000> # Number of frames used in getting combination weights at the"
echo " # very end."
echo " --stage <stage|-9> # Used to run a partially-completed training process from somewhere in"
echo " # the middle."
echo " --transform-dir # Directory with fMLLR transforms. Overrides alidir if provided."
exit 1;
fi
data=$1
lang=$2
alidir=$3
sdir=$4
dir=$5
# Check some files.
for f in $data/feats.scp $lang/L.fst $alidir/ali.1.gz $alidir/final.mdl $alidir/tree; do
[ ! -f $f ] && echo "$0: no such file $f" && exit 1;
done
# Set some variables.
num_leaves=`gmm-info $alidir/final.mdl 2>/dev/null | awk '/number of pdfs/{print $NF}'` || exit 1;
nj=`cat $alidir/num_jobs` || exit 1; # number of jobs in alignment dir...
# in this dir we'll have just one job.
sdata=$data/split$nj
utils/split_data.sh $data $nj
mkdir -p $dir/log
echo $nj > $dir/num_jobs
splice_opts=`cat $alidir/splice_opts 2>/dev/null`
cp $alidir/splice_opts $dir 2>/dev/null
cp $alidir/tree $dir
utils/lang/check_phones_compatible.sh $lang/phones.txt $alidir/phones.txt || exit 1;
utils/lang/check_phones_compatible.sh $lang/phones.txt $sdir/phones.txt || exit 1;
cp $lang/phones.txt $dir || exit 1;
[ -z "$transform_dir" ] && transform_dir=$alidir
if [ $stage -le -3 ] && [ -z "$egs_dir" ]; then
echo "$0: calling get_egs.sh"
steps/nnet2/get_egs.sh --samples-per-iter $samples_per_iter --num-jobs-nnet $num_jobs_nnet \
--splice-width $splice_width --stage $get_egs_stage --cmd "$cmd" $egs_opts --io-opts "$io_opts" --transform-dir $transform_dir \
$data $lang $alidir $dir || exit 1;
fi
if [ -z $egs_dir ]; then
egs_dir=$dir/egs
fi
iters_per_epoch=`cat $egs_dir/iters_per_epoch` || exit 1;
! [ $num_jobs_nnet -eq `cat $egs_dir/num_jobs_nnet` ] && \
echo "$0: Warning: using --num-jobs-nnet=`cat $egs_dir/num_jobs_nnet` from $egs_dir"
num_jobs_nnet=`cat $egs_dir/num_jobs_nnet` || exit 1;
if [ $stage -le -2 ]; then
echo "$0: using existing neural net";
source_model=$sdir/final.mdl
nnet-am-copy --learning-rates=${learning_rates} $source_model $dir/0.mdl
fi
num_iters=$[$num_epochs * $iters_per_epoch];
echo "$0: Will train for $num_epochs epochs, equalling $num_iters iterations"
if [ $num_threads -eq 1 ]; then
train_suffix="-simple" # this enables us to use GPU code if
# we have just one thread.
else
train_suffix="-parallel --num-threads=$num_threads"
fi
x=0
while [ $x -lt $num_iters ]; do
if [ $x -ge 0 ] && [ $stage -le $x ]; then
# Set off jobs doing some diagnostics, in the background.
$cmd $dir/log/compute_prob_valid.$x.log \
nnet-compute-prob $dir/$x.mdl ark:$egs_dir/valid_diagnostic.egs &
$cmd $dir/log/compute_prob_train.$x.log \
nnet-compute-prob $dir/$x.mdl ark:$egs_dir/train_diagnostic.egs &
if [ $x -gt 0 ] ; then
$cmd $dir/log/progress.$x.log \
nnet-show-progress --use-gpu=no $dir/$[$x-1].mdl $dir/$x.mdl ark:$egs_dir/train_diagnostic.egs &
fi
echo "Training neural net (pass $x)"
mdl=$dir/$x.mdl
$cmd $parallel_opts JOB=1:$num_jobs_nnet $dir/log/train.$x.JOB.log \
nnet-shuffle-egs --buffer-size=$shuffle_buffer_size --srand=$x \
ark:$egs_dir/egs.JOB.$[$x%$iters_per_epoch].ark ark:- \| \
nnet-train$train_suffix \
--minibatch-size=$minibatch_size --srand=$x "$mdl" \
ark:- $dir/$[$x+1].JOB.mdl \
|| exit 1;
nnets_list=
for n in `seq 1 $num_jobs_nnet`; do
nnets_list="$nnets_list $dir/$[$x+1].$n.mdl"
done
$cmd $dir/log/average.$x.log \
nnet-am-average $nnets_list $dir/$[$x+1].mdl || exit 1;
rm $nnets_list
fi
x=$[$x+1]
done
# Now do combination.
# At the end, final.mdl will be a combination of the last e.g. 10 models.
nnets_list=()
if [ $num_iters_final -gt $num_iters ]; then
echo "Setting num_iters_final=$num_iters"
fi
start=$[$num_iters-$num_iters_final+1]
for x in `seq $start $num_iters`; do
idx=$[$x-$start]
nnets_list[$idx]=$dir/$x.mdl # "nnet-am-copy --remove-dropout=true $dir/$x.mdl - |"
done
if [ $stage -le $num_iters ]; then
# Below, use --use-gpu=no to disable nnet-combine-fast from using a GPU, as
# if there are many models it can give out-of-memory error; set num-threads to 8
# to speed it up (this isn't ideal...)
this_num_threads=$num_threads
[ $this_num_threads -lt 8 ] && this_num_threads=8
num_egs=`nnet-copy-egs ark:$egs_dir/combine.egs ark:/dev/null 2>&1 | tail -n 1 | awk '{print $NF}'`
mb=$[($num_egs+$this_num_threads-1)/$this_num_threads]
[ $mb -gt 512 ] && mb=512
# Setting --initial-model to a large value makes it initialize the combination
# with the average of all the models. It's important not to start with a
# single model, or, due to the invariance to scaling that these nonlinearities
# give us, we get zero diagonal entries in the fisher matrix that
# nnet-combine-fast uses for scaling, which after flooring and inversion, has
# the effect that the initial model chosen gets much higher learning rates
# than the others. This prevents the optimization from working well.
$cmd $parallel_opts $dir/log/combine.log \
nnet-combine-fast --initial-model=100000 --num-lbfgs-iters=40 --use-gpu=no \
--num-threads=$this_num_threads --regularizer=$combine_regularizer \
--verbose=3 --minibatch-size=$mb "${nnets_list[@]}" ark:$egs_dir/combine.egs \
$dir/final.mdl || exit 1;
fi
# Compute the probability of the final, combined model with
# the same subset we used for the previous compute_probs, as the
# different subsets will lead to different probs.
$cmd $dir/log/compute_prob_valid.final.log \
nnet-compute-prob $dir/final.mdl ark:$egs_dir/valid_diagnostic.egs &
$cmd $dir/log/compute_prob_train.final.log \
nnet-compute-prob $dir/final.mdl ark:$egs_dir/train_diagnostic.egs &
sleep 2
echo Done
if $cleanup; then
echo Cleaning up data
if [ $egs_dir == "$dir/egs" ]; then
echo Removing training examples
steps/nnet2/remove_egs.sh $dir/egs
fi
echo Removing most of the models
for x in `seq 0 $num_iters`; do
if [ $[$x%10] -ne 0 ] && [ $x -lt $[$num_iters-$num_iters_final+1] ]; then
# delete all but every 10th model; don't delete the ones which combine to form the final model.
rm $dir/$x.mdl
fi
done
fi