Blame view
egs/wsj/s5/steps/nnet3/components.py
29.1 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
#!/usr/bin/env python # Note: this file is part of some nnet3 config-creation tools that are now deprecated. from __future__ import print_function import os import argparse import sys import warnings import copy from operator import itemgetter def GetSumDescriptor(inputs): sum_descriptors = inputs while len(sum_descriptors) != 1: cur_sum_descriptors = [] pair = [] while len(sum_descriptors) > 0: value = sum_descriptors.pop() if value.strip() != '': pair.append(value) if len(pair) == 2: cur_sum_descriptors.append("Sum({0}, {1})".format(pair[0], pair[1])) pair = [] if pair: cur_sum_descriptors.append(pair[0]) sum_descriptors = cur_sum_descriptors return sum_descriptors # adds the input nodes and returns the descriptor def AddInputLayer(config_lines, feat_dim, splice_indexes=[0], ivector_dim=0): components = config_lines['components'] component_nodes = config_lines['component-nodes'] output_dim = 0 components.append('input-node name=input dim=' + str(feat_dim)) list = [('Offset(input, {0})'.format(n) if n != 0 else 'input') for n in splice_indexes] output_dim += len(splice_indexes) * feat_dim if ivector_dim > 0: components.append('input-node name=ivector dim=' + str(ivector_dim)) list.append('ReplaceIndex(ivector, t, 0)') output_dim += ivector_dim if len(list) > 1: splice_descriptor = "Append({0})".format(", ".join(list)) else: splice_descriptor = list[0] print(splice_descriptor) return {'descriptor': splice_descriptor, 'dimension': output_dim} def AddNoOpLayer(config_lines, name, input): components = config_lines['components'] component_nodes = config_lines['component-nodes'] components.append('component name={0}_noop type=NoOpComponent dim={1}'.format(name, input['dimension'])) component_nodes.append('component-node name={0}_noop component={0}_noop input={1}'.format(name, input['descriptor'])) return {'descriptor': '{0}_noop'.format(name), 'dimension': input['dimension']} def AddLdaLayer(config_lines, name, input, lda_file): return AddFixedAffineLayer(config_lines, name, input, lda_file) def AddFixedAffineLayer(config_lines, name, input, matrix_file): components = config_lines['components'] component_nodes = config_lines['component-nodes'] components.append('component name={0}_fixaffine type=FixedAffineComponent matrix={1}'.format(name, matrix_file)) component_nodes.append('component-node name={0}_fixaffine component={0}_fixaffine input={1}'.format(name, input['descriptor'])) return {'descriptor': '{0}_fixaffine'.format(name), 'dimension': input['dimension']} def AddBlockAffineLayer(config_lines, name, input, output_dim, num_blocks): components = config_lines['components'] component_nodes = config_lines['component-nodes'] assert((input['dimension'] % num_blocks == 0) and (output_dim % num_blocks == 0)) components.append('component name={0}_block_affine type=BlockAffineComponent input-dim={1} output-dim={2} num-blocks={3}'.format(name, input['dimension'], output_dim, num_blocks)) component_nodes.append('component-node name={0}_block_affine component={0}_block_affine input={1}'.format(name, input['descriptor'])) return {'descriptor' : '{0}_block_affine'.format(name), 'dimension' : output_dim} def AddPermuteLayer(config_lines, name, input, column_map): components = config_lines['components'] component_nodes = config_lines['component-nodes'] permute_indexes = ",".join([str(x) for x in column_map]) components.append('component name={0}_permute type=PermuteComponent column-map={1}'.format(name, permute_indexes)) component_nodes.append('component-node name={0}_permute component={0}_permute input={1}'.format(name, input['descriptor'])) return {'descriptor': '{0}_permute'.format(name), 'dimension': input['dimension']} def AddAffineLayer(config_lines, name, input, output_dim, ng_affine_options = "", max_change_per_component = 0.75): components = config_lines['components'] component_nodes = config_lines['component-nodes'] # Per-component max-change option max_change_options = "max-change={0:.2f}".format(max_change_per_component) if max_change_per_component is not None else '' components.append("component name={0}_affine type=NaturalGradientAffineComponent input-dim={1} output-dim={2} {3} {4}".format(name, input['dimension'], output_dim, ng_affine_options, max_change_options)) component_nodes.append("component-node name={0}_affine component={0}_affine input={1}".format(name, input['descriptor'])) return {'descriptor': '{0}_affine'.format(name), 'dimension': output_dim} def AddAffRelNormLayer(config_lines, name, input, output_dim, ng_affine_options = " bias-stddev=0 ", norm_target_rms = 1.0, self_repair_scale = None, max_change_per_component = 0.75): components = config_lines['components'] component_nodes = config_lines['component-nodes'] # self_repair_scale is a constant scaling the self-repair vector computed in RectifiedLinearComponent self_repair_string = "self-repair-scale={0:.10f}".format(self_repair_scale) if self_repair_scale is not None else '' # Per-component max-change option max_change_options = "max-change={0:.2f}".format(max_change_per_component) if max_change_per_component is not None else '' components.append("component name={0}_affine type=NaturalGradientAffineComponent input-dim={1} output-dim={2} {3} {4}".format(name, input['dimension'], output_dim, ng_affine_options, max_change_options)) components.append("component name={0}_relu type=RectifiedLinearComponent dim={1} {2}".format(name, output_dim, self_repair_string)) components.append("component name={0}_renorm type=NormalizeComponent dim={1} target-rms={2}".format(name, output_dim, norm_target_rms)) component_nodes.append("component-node name={0}_affine component={0}_affine input={1}".format(name, input['descriptor'])) component_nodes.append("component-node name={0}_relu component={0}_relu input={0}_affine".format(name)) component_nodes.append("component-node name={0}_renorm component={0}_renorm input={0}_relu".format(name)) return {'descriptor': '{0}_renorm'.format(name), 'dimension': output_dim} def AddAffPnormLayer(config_lines, name, input, pnorm_input_dim, pnorm_output_dim, ng_affine_options = " bias-stddev=0 ", norm_target_rms = 1.0): components = config_lines['components'] component_nodes = config_lines['component-nodes'] components.append("component name={0}_affine type=NaturalGradientAffineComponent input-dim={1} output-dim={2} {3}".format(name, input['dimension'], pnorm_input_dim, ng_affine_options)) components.append("component name={0}_pnorm type=PnormComponent input-dim={1} output-dim={2}".format(name, pnorm_input_dim, pnorm_output_dim)) components.append("component name={0}_renorm type=NormalizeComponent dim={1} target-rms={2}".format(name, pnorm_output_dim, norm_target_rms)) component_nodes.append("component-node name={0}_affine component={0}_affine input={1}".format(name, input['descriptor'])) component_nodes.append("component-node name={0}_pnorm component={0}_pnorm input={0}_affine".format(name)) component_nodes.append("component-node name={0}_renorm component={0}_renorm input={0}_pnorm".format(name)) return {'descriptor': '{0}_renorm'.format(name), 'dimension': pnorm_output_dim} def AddConvolutionLayer(config_lines, name, input, input_x_dim, input_y_dim, input_z_dim, filt_x_dim, filt_y_dim, filt_x_step, filt_y_step, num_filters, input_vectorization, param_stddev = None, bias_stddev = None, filter_bias_file = None, is_updatable = True): assert(input['dimension'] == input_x_dim * input_y_dim * input_z_dim) components = config_lines['components'] component_nodes = config_lines['component-nodes'] conv_init_string = ("component name={name}_conv type=ConvolutionComponent " "input-x-dim={input_x_dim} input-y-dim={input_y_dim} input-z-dim={input_z_dim} " "filt-x-dim={filt_x_dim} filt-y-dim={filt_y_dim} " "filt-x-step={filt_x_step} filt-y-step={filt_y_step} " "input-vectorization-order={vector_order}".format(name = name, input_x_dim = input_x_dim, input_y_dim = input_y_dim, input_z_dim = input_z_dim, filt_x_dim = filt_x_dim, filt_y_dim = filt_y_dim, filt_x_step = filt_x_step, filt_y_step = filt_y_step, vector_order = input_vectorization)) if filter_bias_file is not None: conv_init_string += " matrix={0}".format(filter_bias_file) else: conv_init_string += " num-filters={0}".format(num_filters) components.append(conv_init_string) component_nodes.append("component-node name={0}_conv_t component={0}_conv input={1}".format(name, input['descriptor'])) num_x_steps = (1 + (input_x_dim - filt_x_dim) // filt_x_step) num_y_steps = (1 + (input_y_dim - filt_y_dim) // filt_y_step) output_dim = num_x_steps * num_y_steps * num_filters; return {'descriptor': '{0}_conv_t'.format(name), 'dimension': output_dim, '3d-dim': [num_x_steps, num_y_steps, num_filters], 'vectorization': 'zyx'} # The Maxpooling component assumes input vectorizations of type zyx def AddMaxpoolingLayer(config_lines, name, input, input_x_dim, input_y_dim, input_z_dim, pool_x_size, pool_y_size, pool_z_size, pool_x_step, pool_y_step, pool_z_step): if input_x_dim < 1 or input_y_dim < 1 or input_z_dim < 1: raise Exception("non-positive maxpooling input size ({0}, {1}, {2})". format(input_x_dim, input_y_dim, input_z_dim)) if pool_x_size > input_x_dim or pool_y_size > input_y_dim or pool_z_size > input_z_dim: raise Exception("invalid maxpooling pool size vs. input size") if pool_x_step > pool_x_size or pool_y_step > pool_y_size or pool_z_step > pool_z_size: raise Exception("invalid maxpooling pool step vs. pool size") assert(input['dimension'] == input_x_dim * input_y_dim * input_z_dim) components = config_lines['components'] component_nodes = config_lines['component-nodes'] components.append('component name={name}_maxp type=MaxpoolingComponent ' 'input-x-dim={input_x_dim} input-y-dim={input_y_dim} input-z-dim={input_z_dim} ' 'pool-x-size={pool_x_size} pool-y-size={pool_y_size} pool-z-size={pool_z_size} ' 'pool-x-step={pool_x_step} pool-y-step={pool_y_step} pool-z-step={pool_z_step} '. format(name = name, input_x_dim = input_x_dim, input_y_dim = input_y_dim, input_z_dim = input_z_dim, pool_x_size = pool_x_size, pool_y_size = pool_y_size, pool_z_size = pool_z_size, pool_x_step = pool_x_step, pool_y_step = pool_y_step, pool_z_step = pool_z_step)) component_nodes.append('component-node name={0}_maxp_t component={0}_maxp input={1}'.format(name, input['descriptor'])) num_pools_x = 1 + (input_x_dim - pool_x_size) // pool_x_step; num_pools_y = 1 + (input_y_dim - pool_y_size) // pool_y_step; num_pools_z = 1 + (input_z_dim - pool_z_size) // pool_z_step; output_dim = num_pools_x * num_pools_y * num_pools_z; return {'descriptor': '{0}_maxp_t'.format(name), 'dimension': output_dim, '3d-dim': [num_pools_x, num_pools_y, num_pools_z], 'vectorization': 'zyx'} def AddSoftmaxLayer(config_lines, name, input): components = config_lines['components'] component_nodes = config_lines['component-nodes'] components.append("component name={0}_log_softmax type=LogSoftmaxComponent dim={1}".format(name, input['dimension'])) component_nodes.append("component-node name={0}_log_softmax component={0}_log_softmax input={1}".format(name, input['descriptor'])) return {'descriptor': '{0}_log_softmax'.format(name), 'dimension': input['dimension']} def AddSigmoidLayer(config_lines, name, input, self_repair_scale = None): components = config_lines['components'] component_nodes = config_lines['component-nodes'] # self_repair_scale is a constant scaling the self-repair vector computed in SigmoidComponent self_repair_string = "self-repair-scale={0:.10f}".format(self_repair_scale) if self_repair_scale is not None else '' components.append("component name={0}_sigmoid type=SigmoidComponent dim={1}".format(name, input['dimension'], self_repair_string)) component_nodes.append("component-node name={0}_sigmoid component={0}_sigmoid input={1}".format(name, input['descriptor'])) return {'descriptor': '{0}_sigmoid'.format(name), 'dimension': input['dimension']} def AddOutputLayer(config_lines, input, label_delay = None, suffix=None, objective_type = "linear"): components = config_lines['components'] component_nodes = config_lines['component-nodes'] name = 'output' if suffix is not None: name = '{0}-{1}'.format(name, suffix) if label_delay is None: component_nodes.append('output-node name={0} input={1} objective={2}'.format(name, input['descriptor'], objective_type)) else: component_nodes.append('output-node name={0} input=Offset({1},{2}) objective={3}'.format(name, input['descriptor'], label_delay, objective_type)) def AddFinalLayer(config_lines, input, output_dim, ng_affine_options = " param-stddev=0 bias-stddev=0 ", max_change_per_component = 1.5, label_delay=None, use_presoftmax_prior_scale = False, prior_scale_file = None, include_log_softmax = True, add_final_sigmoid = False, name_affix = None, objective_type = "linear"): components = config_lines['components'] component_nodes = config_lines['component-nodes'] if name_affix is not None: final_node_prefix = 'Final-' + str(name_affix) else: final_node_prefix = 'Final' prev_layer_output = AddAffineLayer(config_lines, final_node_prefix , input, output_dim, ng_affine_options, max_change_per_component) if include_log_softmax: if use_presoftmax_prior_scale : components.append('component name={0}-fixed-scale type=FixedScaleComponent scales={1}'.format(final_node_prefix, prior_scale_file)) component_nodes.append('component-node name={0}-fixed-scale component={0}-fixed-scale input={1}'.format(final_node_prefix, prev_layer_output['descriptor'])) prev_layer_output['descriptor'] = "{0}-fixed-scale".format(final_node_prefix) prev_layer_output = AddSoftmaxLayer(config_lines, final_node_prefix, prev_layer_output) elif add_final_sigmoid: # Useful when you need the final outputs to be probabilities # between 0 and 1. # Usually used with an objective-type such as "quadratic" prev_layer_output = AddSigmoidLayer(config_lines, final_node_prefix, prev_layer_output) # we use the same name_affix as a prefix in for affine/scale nodes but as a # suffix for output node AddOutputLayer(config_lines, prev_layer_output, label_delay, suffix = name_affix, objective_type = objective_type) def AddLstmLayer(config_lines, name, input, cell_dim, recurrent_projection_dim = 0, non_recurrent_projection_dim = 0, clipping_threshold = 30.0, zeroing_threshold = 15.0, zeroing_interval = 20, ng_per_element_scale_options = "", ng_affine_options = "", lstm_delay = -1, self_repair_scale_nonlinearity = None, max_change_per_component = 0.75): assert(recurrent_projection_dim >= 0 and non_recurrent_projection_dim >= 0) components = config_lines['components'] component_nodes = config_lines['component-nodes'] input_descriptor = input['descriptor'] input_dim = input['dimension'] name = name.strip() if (recurrent_projection_dim == 0): add_recurrent_projection = False recurrent_projection_dim = cell_dim recurrent_connection = "m_t" else: add_recurrent_projection = True recurrent_connection = "r_t" if (non_recurrent_projection_dim == 0): add_non_recurrent_projection = False else: add_non_recurrent_projection = True # self_repair_scale_nonlinearity is a constant scaling the self-repair vector computed in derived classes of NonlinearComponent, # i.e., SigmoidComponent, TanhComponent and RectifiedLinearComponent self_repair_nonlinearity_string = "self-repair-scale={0:.10f}".format(self_repair_scale_nonlinearity) if self_repair_scale_nonlinearity is not None else '' # Natural gradient per element scale parameters ng_per_element_scale_options += " param-mean=0.0 param-stddev=1.0 " # Per-component max-change option max_change_options = "max-change={0:.2f}".format(max_change_per_component) if max_change_per_component is not None else '' # Parameter Definitions W*(* replaced by - to have valid names) components.append("# Input gate control : W_i* matrices") components.append("component name={0}_W_i-xr type=NaturalGradientAffineComponent input-dim={1} output-dim={2} {3} {4}".format(name, input_dim + recurrent_projection_dim, cell_dim, ng_affine_options, max_change_options)) components.append("# note : the cell outputs pass through a diagonal matrix") components.append("component name={0}_w_ic type=NaturalGradientPerElementScaleComponent dim={1} {2} {3}".format(name, cell_dim, ng_per_element_scale_options, max_change_options)) components.append("# Forget gate control : W_f* matrices") components.append("component name={0}_W_f-xr type=NaturalGradientAffineComponent input-dim={1} output-dim={2} {3} {4}".format(name, input_dim + recurrent_projection_dim, cell_dim, ng_affine_options, max_change_options)) components.append("# note : the cell outputs pass through a diagonal matrix") components.append("component name={0}_w_fc type=NaturalGradientPerElementScaleComponent dim={1} {2} {3}".format(name, cell_dim, ng_per_element_scale_options, max_change_options)) components.append("# Output gate control : W_o* matrices") components.append("component name={0}_W_o-xr type=NaturalGradientAffineComponent input-dim={1} output-dim={2} {3} {4}".format(name, input_dim + recurrent_projection_dim, cell_dim, ng_affine_options, max_change_options)) components.append("# note : the cell outputs pass through a diagonal matrix") components.append("component name={0}_w_oc type=NaturalGradientPerElementScaleComponent dim={1} {2} {3}".format(name, cell_dim, ng_per_element_scale_options, max_change_options)) components.append("# Cell input matrices : W_c* matrices") components.append("component name={0}_W_c-xr type=NaturalGradientAffineComponent input-dim={1} output-dim={2} {3} {4}".format(name, input_dim + recurrent_projection_dim, cell_dim, ng_affine_options, max_change_options)) components.append("# Defining the non-linearities") components.append("component name={0}_i type=SigmoidComponent dim={1} {2}".format(name, cell_dim, self_repair_nonlinearity_string)) components.append("component name={0}_f type=SigmoidComponent dim={1} {2}".format(name, cell_dim, self_repair_nonlinearity_string)) components.append("component name={0}_o type=SigmoidComponent dim={1} {2}".format(name, cell_dim, self_repair_nonlinearity_string)) components.append("component name={0}_g type=TanhComponent dim={1} {2}".format(name, cell_dim, self_repair_nonlinearity_string)) components.append("component name={0}_h type=TanhComponent dim={1} {2}".format(name, cell_dim, self_repair_nonlinearity_string)) components.append("# Defining the cell computations") components.append("component name={0}_c1 type=ElementwiseProductComponent input-dim={1} output-dim={2}".format(name, 2 * cell_dim, cell_dim)) components.append("component name={0}_c2 type=ElementwiseProductComponent input-dim={1} output-dim={2}".format(name, 2 * cell_dim, cell_dim)) components.append("component name={0}_m type=ElementwiseProductComponent input-dim={1} output-dim={2}".format(name, 2 * cell_dim, cell_dim)) components.append("component name={0}_c type=BackpropTruncationComponent dim={1} " "clipping-threshold={2} zeroing-threshold={3} zeroing-interval={4} " "recurrence-interval={5}".format(name, cell_dim, clipping_threshold, zeroing_threshold, zeroing_interval, abs(lstm_delay))) # c1_t and c2_t defined below component_nodes.append("component-node name={0}_c_t component={0}_c input=Sum({0}_c1_t, {0}_c2_t)".format(name)) c_tminus1_descriptor = "IfDefined(Offset({0}_c_t, {1}))".format(name, lstm_delay) component_nodes.append("# i_t") component_nodes.append("component-node name={0}_i1 component={0}_W_i-xr input=Append({1}, IfDefined(Offset({0}_{2}, {3})))".format(name, input_descriptor, recurrent_connection, lstm_delay)) component_nodes.append("component-node name={0}_i2 component={0}_w_ic input={1}".format(name, c_tminus1_descriptor)) component_nodes.append("component-node name={0}_i_t component={0}_i input=Sum({0}_i1, {0}_i2)".format(name)) component_nodes.append("# f_t") component_nodes.append("component-node name={0}_f1 component={0}_W_f-xr input=Append({1}, IfDefined(Offset({0}_{2}, {3})))".format(name, input_descriptor, recurrent_connection, lstm_delay)) component_nodes.append("component-node name={0}_f2 component={0}_w_fc input={1}".format(name, c_tminus1_descriptor)) component_nodes.append("component-node name={0}_f_t component={0}_f input=Sum({0}_f1,{0}_f2)".format(name)) component_nodes.append("# o_t") component_nodes.append("component-node name={0}_o1 component={0}_W_o-xr input=Append({1}, IfDefined(Offset({0}_{2}, {3})))".format(name, input_descriptor, recurrent_connection, lstm_delay)) component_nodes.append("component-node name={0}_o2 component={0}_w_oc input={0}_c_t".format(name)) component_nodes.append("component-node name={0}_o_t component={0}_o input=Sum({0}_o1, {0}_o2)".format(name)) component_nodes.append("# h_t") component_nodes.append("component-node name={0}_h_t component={0}_h input={0}_c_t".format(name)) component_nodes.append("# g_t") component_nodes.append("component-node name={0}_g1 component={0}_W_c-xr input=Append({1}, IfDefined(Offset({0}_{2}, {3})))".format(name, input_descriptor, recurrent_connection, lstm_delay)) component_nodes.append("component-node name={0}_g_t component={0}_g input={0}_g1".format(name)) component_nodes.append("# parts of c_t") component_nodes.append("component-node name={0}_c1_t component={0}_c1 input=Append({0}_f_t, {1})".format(name, c_tminus1_descriptor)) component_nodes.append("component-node name={0}_c2_t component={0}_c2 input=Append({0}_i_t, {0}_g_t)".format(name)) component_nodes.append("# m_t") component_nodes.append("component-node name={0}_m_t component={0}_m input=Append({0}_o_t, {0}_h_t)".format(name)) # add the recurrent connections if (add_recurrent_projection and add_non_recurrent_projection): components.append("# projection matrices : Wrm and Wpm") components.append("component name={0}_W-m type=NaturalGradientAffineComponent input-dim={1} output-dim={2} {3} {4}".format(name, cell_dim, recurrent_projection_dim + non_recurrent_projection_dim, ng_affine_options, max_change_options)) components.append("component name={0}_r type=BackpropTruncationComponent dim={1} " "clipping-threshold={2} zeroing-threshold={3} zeroing-interval={4} " "recurrence-interval={5}".format(name, recurrent_projection_dim, clipping_threshold, zeroing_threshold, zeroing_interval, abs(lstm_delay))) component_nodes.append("# r_t and p_t") component_nodes.append("component-node name={0}_rp_t component={0}_W-m input={0}_m_t".format(name)) component_nodes.append("dim-range-node name={0}_r_t_preclip input-node={0}_rp_t dim-offset=0 dim={1}".format(name, recurrent_projection_dim)) component_nodes.append("component-node name={0}_r_t component={0}_r input={0}_r_t_preclip".format(name)) output_descriptor = '{0}_rp_t'.format(name) output_dim = recurrent_projection_dim + non_recurrent_projection_dim elif add_recurrent_projection: components.append("# projection matrices : Wrm") components.append("component name={0}_Wrm type=NaturalGradientAffineComponent input-dim={1} output-dim={2} {3} {4}".format( name, cell_dim, recurrent_projection_dim, ng_affine_options, max_change_options)) components.append("component name={0}_r type=BackpropTruncationComponent dim={1} " "clipping-threshold={2} zeroing-threshold={3} zeroing-interval={4} " "recurrence-interval={5}".format(name, recurrent_projection_dim, clipping_threshold, zeroing_threshold, zeroing_interval, abs(lstm_delay))) component_nodes.append("# r_t") component_nodes.append("component-node name={0}_r_t_preclip component={0}_Wrm input={0}_m_t".format(name)) component_nodes.append("component-node name={0}_r_t component={0}_r input={0}_r_t_preclip".format(name)) output_descriptor = '{0}_r_t'.format(name) output_dim = recurrent_projection_dim else: components.append("component name={0}_r type=BackpropTruncationComponent dim={1} " "clipping-threshold={2} zeroing-threshold={3} zeroing-interval={4} " "recurrence-interval={5}".format(name, cell_dim, clipping_threshold, zeroing_threshold, zeroing_interval, abs(lstm_delay))) component_nodes.append("component-node name={0}_r_t component={0}_r input={0}_m_t".format(name)) output_descriptor = '{0}_r_t'.format(name) output_dim = cell_dim return { 'descriptor': output_descriptor, 'dimension':output_dim } def AddBLstmLayer(config_lines, name, input, cell_dim, recurrent_projection_dim = 0, non_recurrent_projection_dim = 0, clipping_threshold = 1.0, zeroing_threshold = 3.0, zeroing_interval = 20, ng_per_element_scale_options = "", ng_affine_options = "", lstm_delay = [-1,1], self_repair_scale_nonlinearity = None, max_change_per_component = 0.75): assert(len(lstm_delay) == 2 and lstm_delay[0] < 0 and lstm_delay[1] > 0) output_forward = AddLstmLayer(config_lines = config_lines, name = "{0}_forward".format(name), input = input, cell_dim = cell_dim, recurrent_projection_dim = recurrent_projection_dim, non_recurrent_projection_dim = non_recurrent_projection_dim, clipping_threshold = clipping_threshold, zeroing_threshold = zeroing_threshold, zeroing_interval = zeroing_interval, ng_per_element_scale_options = ng_per_element_scale_options, ng_affine_options = ng_affine_options, lstm_delay = lstm_delay[0], self_repair_scale_nonlinearity = self_repair_scale_nonlinearity, max_change_per_component = max_change_per_component) output_backward = AddLstmLayer(config_lines = config_lines, name = "{0}_backward".format(name), input = input, cell_dim = cell_dim, recurrent_projection_dim = recurrent_projection_dim, non_recurrent_projection_dim = non_recurrent_projection_dim, clipping_threshold = clipping_threshold, zeroing_threshold = zeroing_threshold, zeroing_interval = zeroing_interval, ng_per_element_scale_options = ng_per_element_scale_options, ng_affine_options = ng_affine_options, lstm_delay = lstm_delay[1], self_repair_scale_nonlinearity = self_repair_scale_nonlinearity, max_change_per_component = max_change_per_component) output_descriptor = 'Append({0}, {1})'.format(output_forward['descriptor'], output_backward['descriptor']) output_dim = output_forward['dimension'] + output_backward['dimension'] return { 'descriptor': output_descriptor, 'dimension':output_dim } |