components.py
29.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
#!/usr/bin/env python
# Note: this file is part of some nnet3 config-creation tools that are now deprecated.
from __future__ import print_function
import os
import argparse
import sys
import warnings
import copy
from operator import itemgetter
def GetSumDescriptor(inputs):
sum_descriptors = inputs
while len(sum_descriptors) != 1:
cur_sum_descriptors = []
pair = []
while len(sum_descriptors) > 0:
value = sum_descriptors.pop()
if value.strip() != '':
pair.append(value)
if len(pair) == 2:
cur_sum_descriptors.append("Sum({0}, {1})".format(pair[0], pair[1]))
pair = []
if pair:
cur_sum_descriptors.append(pair[0])
sum_descriptors = cur_sum_descriptors
return sum_descriptors
# adds the input nodes and returns the descriptor
def AddInputLayer(config_lines, feat_dim, splice_indexes=[0], ivector_dim=0):
components = config_lines['components']
component_nodes = config_lines['component-nodes']
output_dim = 0
components.append('input-node name=input dim=' + str(feat_dim))
list = [('Offset(input, {0})'.format(n) if n != 0 else 'input') for n in splice_indexes]
output_dim += len(splice_indexes) * feat_dim
if ivector_dim > 0:
components.append('input-node name=ivector dim=' + str(ivector_dim))
list.append('ReplaceIndex(ivector, t, 0)')
output_dim += ivector_dim
if len(list) > 1:
splice_descriptor = "Append({0})".format(", ".join(list))
else:
splice_descriptor = list[0]
print(splice_descriptor)
return {'descriptor': splice_descriptor,
'dimension': output_dim}
def AddNoOpLayer(config_lines, name, input):
components = config_lines['components']
component_nodes = config_lines['component-nodes']
components.append('component name={0}_noop type=NoOpComponent dim={1}'.format(name, input['dimension']))
component_nodes.append('component-node name={0}_noop component={0}_noop input={1}'.format(name, input['descriptor']))
return {'descriptor': '{0}_noop'.format(name),
'dimension': input['dimension']}
def AddLdaLayer(config_lines, name, input, lda_file):
return AddFixedAffineLayer(config_lines, name, input, lda_file)
def AddFixedAffineLayer(config_lines, name, input, matrix_file):
components = config_lines['components']
component_nodes = config_lines['component-nodes']
components.append('component name={0}_fixaffine type=FixedAffineComponent matrix={1}'.format(name, matrix_file))
component_nodes.append('component-node name={0}_fixaffine component={0}_fixaffine input={1}'.format(name, input['descriptor']))
return {'descriptor': '{0}_fixaffine'.format(name),
'dimension': input['dimension']}
def AddBlockAffineLayer(config_lines, name, input, output_dim, num_blocks):
components = config_lines['components']
component_nodes = config_lines['component-nodes']
assert((input['dimension'] % num_blocks == 0) and
(output_dim % num_blocks == 0))
components.append('component name={0}_block_affine type=BlockAffineComponent input-dim={1} output-dim={2} num-blocks={3}'.format(name, input['dimension'], output_dim, num_blocks))
component_nodes.append('component-node name={0}_block_affine component={0}_block_affine input={1}'.format(name, input['descriptor']))
return {'descriptor' : '{0}_block_affine'.format(name),
'dimension' : output_dim}
def AddPermuteLayer(config_lines, name, input, column_map):
components = config_lines['components']
component_nodes = config_lines['component-nodes']
permute_indexes = ",".join([str(x) for x in column_map])
components.append('component name={0}_permute type=PermuteComponent column-map={1}'.format(name, permute_indexes))
component_nodes.append('component-node name={0}_permute component={0}_permute input={1}'.format(name, input['descriptor']))
return {'descriptor': '{0}_permute'.format(name),
'dimension': input['dimension']}
def AddAffineLayer(config_lines, name, input, output_dim, ng_affine_options = "", max_change_per_component = 0.75):
components = config_lines['components']
component_nodes = config_lines['component-nodes']
# Per-component max-change option
max_change_options = "max-change={0:.2f}".format(max_change_per_component) if max_change_per_component is not None else ''
components.append("component name={0}_affine type=NaturalGradientAffineComponent input-dim={1} output-dim={2} {3} {4}".format(name, input['dimension'], output_dim, ng_affine_options, max_change_options))
component_nodes.append("component-node name={0}_affine component={0}_affine input={1}".format(name, input['descriptor']))
return {'descriptor': '{0}_affine'.format(name),
'dimension': output_dim}
def AddAffRelNormLayer(config_lines, name, input, output_dim, ng_affine_options = " bias-stddev=0 ", norm_target_rms = 1.0, self_repair_scale = None, max_change_per_component = 0.75):
components = config_lines['components']
component_nodes = config_lines['component-nodes']
# self_repair_scale is a constant scaling the self-repair vector computed in RectifiedLinearComponent
self_repair_string = "self-repair-scale={0:.10f}".format(self_repair_scale) if self_repair_scale is not None else ''
# Per-component max-change option
max_change_options = "max-change={0:.2f}".format(max_change_per_component) if max_change_per_component is not None else ''
components.append("component name={0}_affine type=NaturalGradientAffineComponent input-dim={1} output-dim={2} {3} {4}".format(name, input['dimension'], output_dim, ng_affine_options, max_change_options))
components.append("component name={0}_relu type=RectifiedLinearComponent dim={1} {2}".format(name, output_dim, self_repair_string))
components.append("component name={0}_renorm type=NormalizeComponent dim={1} target-rms={2}".format(name, output_dim, norm_target_rms))
component_nodes.append("component-node name={0}_affine component={0}_affine input={1}".format(name, input['descriptor']))
component_nodes.append("component-node name={0}_relu component={0}_relu input={0}_affine".format(name))
component_nodes.append("component-node name={0}_renorm component={0}_renorm input={0}_relu".format(name))
return {'descriptor': '{0}_renorm'.format(name),
'dimension': output_dim}
def AddAffPnormLayer(config_lines, name, input, pnorm_input_dim, pnorm_output_dim, ng_affine_options = " bias-stddev=0 ", norm_target_rms = 1.0):
components = config_lines['components']
component_nodes = config_lines['component-nodes']
components.append("component name={0}_affine type=NaturalGradientAffineComponent input-dim={1} output-dim={2} {3}".format(name, input['dimension'], pnorm_input_dim, ng_affine_options))
components.append("component name={0}_pnorm type=PnormComponent input-dim={1} output-dim={2}".format(name, pnorm_input_dim, pnorm_output_dim))
components.append("component name={0}_renorm type=NormalizeComponent dim={1} target-rms={2}".format(name, pnorm_output_dim, norm_target_rms))
component_nodes.append("component-node name={0}_affine component={0}_affine input={1}".format(name, input['descriptor']))
component_nodes.append("component-node name={0}_pnorm component={0}_pnorm input={0}_affine".format(name))
component_nodes.append("component-node name={0}_renorm component={0}_renorm input={0}_pnorm".format(name))
return {'descriptor': '{0}_renorm'.format(name),
'dimension': pnorm_output_dim}
def AddConvolutionLayer(config_lines, name, input,
input_x_dim, input_y_dim, input_z_dim,
filt_x_dim, filt_y_dim,
filt_x_step, filt_y_step,
num_filters, input_vectorization,
param_stddev = None, bias_stddev = None,
filter_bias_file = None,
is_updatable = True):
assert(input['dimension'] == input_x_dim * input_y_dim * input_z_dim)
components = config_lines['components']
component_nodes = config_lines['component-nodes']
conv_init_string = ("component name={name}_conv type=ConvolutionComponent "
"input-x-dim={input_x_dim} input-y-dim={input_y_dim} input-z-dim={input_z_dim} "
"filt-x-dim={filt_x_dim} filt-y-dim={filt_y_dim} "
"filt-x-step={filt_x_step} filt-y-step={filt_y_step} "
"input-vectorization-order={vector_order}".format(name = name,
input_x_dim = input_x_dim, input_y_dim = input_y_dim, input_z_dim = input_z_dim,
filt_x_dim = filt_x_dim, filt_y_dim = filt_y_dim,
filt_x_step = filt_x_step, filt_y_step = filt_y_step,
vector_order = input_vectorization))
if filter_bias_file is not None:
conv_init_string += " matrix={0}".format(filter_bias_file)
else:
conv_init_string += " num-filters={0}".format(num_filters)
components.append(conv_init_string)
component_nodes.append("component-node name={0}_conv_t component={0}_conv input={1}".format(name, input['descriptor']))
num_x_steps = (1 + (input_x_dim - filt_x_dim) // filt_x_step)
num_y_steps = (1 + (input_y_dim - filt_y_dim) // filt_y_step)
output_dim = num_x_steps * num_y_steps * num_filters;
return {'descriptor': '{0}_conv_t'.format(name),
'dimension': output_dim,
'3d-dim': [num_x_steps, num_y_steps, num_filters],
'vectorization': 'zyx'}
# The Maxpooling component assumes input vectorizations of type zyx
def AddMaxpoolingLayer(config_lines, name, input,
input_x_dim, input_y_dim, input_z_dim,
pool_x_size, pool_y_size, pool_z_size,
pool_x_step, pool_y_step, pool_z_step):
if input_x_dim < 1 or input_y_dim < 1 or input_z_dim < 1:
raise Exception("non-positive maxpooling input size ({0}, {1}, {2})".
format(input_x_dim, input_y_dim, input_z_dim))
if pool_x_size > input_x_dim or pool_y_size > input_y_dim or pool_z_size > input_z_dim:
raise Exception("invalid maxpooling pool size vs. input size")
if pool_x_step > pool_x_size or pool_y_step > pool_y_size or pool_z_step > pool_z_size:
raise Exception("invalid maxpooling pool step vs. pool size")
assert(input['dimension'] == input_x_dim * input_y_dim * input_z_dim)
components = config_lines['components']
component_nodes = config_lines['component-nodes']
components.append('component name={name}_maxp type=MaxpoolingComponent '
'input-x-dim={input_x_dim} input-y-dim={input_y_dim} input-z-dim={input_z_dim} '
'pool-x-size={pool_x_size} pool-y-size={pool_y_size} pool-z-size={pool_z_size} '
'pool-x-step={pool_x_step} pool-y-step={pool_y_step} pool-z-step={pool_z_step} '.
format(name = name,
input_x_dim = input_x_dim, input_y_dim = input_y_dim, input_z_dim = input_z_dim,
pool_x_size = pool_x_size, pool_y_size = pool_y_size, pool_z_size = pool_z_size,
pool_x_step = pool_x_step, pool_y_step = pool_y_step, pool_z_step = pool_z_step))
component_nodes.append('component-node name={0}_maxp_t component={0}_maxp input={1}'.format(name, input['descriptor']))
num_pools_x = 1 + (input_x_dim - pool_x_size) // pool_x_step;
num_pools_y = 1 + (input_y_dim - pool_y_size) // pool_y_step;
num_pools_z = 1 + (input_z_dim - pool_z_size) // pool_z_step;
output_dim = num_pools_x * num_pools_y * num_pools_z;
return {'descriptor': '{0}_maxp_t'.format(name),
'dimension': output_dim,
'3d-dim': [num_pools_x, num_pools_y, num_pools_z],
'vectorization': 'zyx'}
def AddSoftmaxLayer(config_lines, name, input):
components = config_lines['components']
component_nodes = config_lines['component-nodes']
components.append("component name={0}_log_softmax type=LogSoftmaxComponent dim={1}".format(name, input['dimension']))
component_nodes.append("component-node name={0}_log_softmax component={0}_log_softmax input={1}".format(name, input['descriptor']))
return {'descriptor': '{0}_log_softmax'.format(name),
'dimension': input['dimension']}
def AddSigmoidLayer(config_lines, name, input, self_repair_scale = None):
components = config_lines['components']
component_nodes = config_lines['component-nodes']
# self_repair_scale is a constant scaling the self-repair vector computed in SigmoidComponent
self_repair_string = "self-repair-scale={0:.10f}".format(self_repair_scale) if self_repair_scale is not None else ''
components.append("component name={0}_sigmoid type=SigmoidComponent dim={1}".format(name, input['dimension'], self_repair_string))
component_nodes.append("component-node name={0}_sigmoid component={0}_sigmoid input={1}".format(name, input['descriptor']))
return {'descriptor': '{0}_sigmoid'.format(name),
'dimension': input['dimension']}
def AddOutputLayer(config_lines, input, label_delay = None, suffix=None, objective_type = "linear"):
components = config_lines['components']
component_nodes = config_lines['component-nodes']
name = 'output'
if suffix is not None:
name = '{0}-{1}'.format(name, suffix)
if label_delay is None:
component_nodes.append('output-node name={0} input={1} objective={2}'.format(name, input['descriptor'], objective_type))
else:
component_nodes.append('output-node name={0} input=Offset({1},{2}) objective={3}'.format(name, input['descriptor'], label_delay, objective_type))
def AddFinalLayer(config_lines, input, output_dim,
ng_affine_options = " param-stddev=0 bias-stddev=0 ",
max_change_per_component = 1.5,
label_delay=None,
use_presoftmax_prior_scale = False,
prior_scale_file = None,
include_log_softmax = True,
add_final_sigmoid = False,
name_affix = None,
objective_type = "linear"):
components = config_lines['components']
component_nodes = config_lines['component-nodes']
if name_affix is not None:
final_node_prefix = 'Final-' + str(name_affix)
else:
final_node_prefix = 'Final'
prev_layer_output = AddAffineLayer(config_lines,
final_node_prefix , input, output_dim,
ng_affine_options, max_change_per_component)
if include_log_softmax:
if use_presoftmax_prior_scale :
components.append('component name={0}-fixed-scale type=FixedScaleComponent scales={1}'.format(final_node_prefix, prior_scale_file))
component_nodes.append('component-node name={0}-fixed-scale component={0}-fixed-scale input={1}'.format(final_node_prefix,
prev_layer_output['descriptor']))
prev_layer_output['descriptor'] = "{0}-fixed-scale".format(final_node_prefix)
prev_layer_output = AddSoftmaxLayer(config_lines, final_node_prefix, prev_layer_output)
elif add_final_sigmoid:
# Useful when you need the final outputs to be probabilities
# between 0 and 1.
# Usually used with an objective-type such as "quadratic"
prev_layer_output = AddSigmoidLayer(config_lines, final_node_prefix, prev_layer_output)
# we use the same name_affix as a prefix in for affine/scale nodes but as a
# suffix for output node
AddOutputLayer(config_lines, prev_layer_output, label_delay, suffix = name_affix, objective_type = objective_type)
def AddLstmLayer(config_lines,
name, input, cell_dim,
recurrent_projection_dim = 0,
non_recurrent_projection_dim = 0,
clipping_threshold = 30.0,
zeroing_threshold = 15.0,
zeroing_interval = 20,
ng_per_element_scale_options = "",
ng_affine_options = "",
lstm_delay = -1,
self_repair_scale_nonlinearity = None,
max_change_per_component = 0.75):
assert(recurrent_projection_dim >= 0 and non_recurrent_projection_dim >= 0)
components = config_lines['components']
component_nodes = config_lines['component-nodes']
input_descriptor = input['descriptor']
input_dim = input['dimension']
name = name.strip()
if (recurrent_projection_dim == 0):
add_recurrent_projection = False
recurrent_projection_dim = cell_dim
recurrent_connection = "m_t"
else:
add_recurrent_projection = True
recurrent_connection = "r_t"
if (non_recurrent_projection_dim == 0):
add_non_recurrent_projection = False
else:
add_non_recurrent_projection = True
# self_repair_scale_nonlinearity is a constant scaling the self-repair vector computed in derived classes of NonlinearComponent,
# i.e., SigmoidComponent, TanhComponent and RectifiedLinearComponent
self_repair_nonlinearity_string = "self-repair-scale={0:.10f}".format(self_repair_scale_nonlinearity) if self_repair_scale_nonlinearity is not None else ''
# Natural gradient per element scale parameters
ng_per_element_scale_options += " param-mean=0.0 param-stddev=1.0 "
# Per-component max-change option
max_change_options = "max-change={0:.2f}".format(max_change_per_component) if max_change_per_component is not None else ''
# Parameter Definitions W*(* replaced by - to have valid names)
components.append("# Input gate control : W_i* matrices")
components.append("component name={0}_W_i-xr type=NaturalGradientAffineComponent input-dim={1} output-dim={2} {3} {4}".format(name, input_dim + recurrent_projection_dim, cell_dim, ng_affine_options, max_change_options))
components.append("# note : the cell outputs pass through a diagonal matrix")
components.append("component name={0}_w_ic type=NaturalGradientPerElementScaleComponent dim={1} {2} {3}".format(name, cell_dim, ng_per_element_scale_options, max_change_options))
components.append("# Forget gate control : W_f* matrices")
components.append("component name={0}_W_f-xr type=NaturalGradientAffineComponent input-dim={1} output-dim={2} {3} {4}".format(name, input_dim + recurrent_projection_dim, cell_dim, ng_affine_options, max_change_options))
components.append("# note : the cell outputs pass through a diagonal matrix")
components.append("component name={0}_w_fc type=NaturalGradientPerElementScaleComponent dim={1} {2} {3}".format(name, cell_dim, ng_per_element_scale_options, max_change_options))
components.append("# Output gate control : W_o* matrices")
components.append("component name={0}_W_o-xr type=NaturalGradientAffineComponent input-dim={1} output-dim={2} {3} {4}".format(name, input_dim + recurrent_projection_dim, cell_dim, ng_affine_options, max_change_options))
components.append("# note : the cell outputs pass through a diagonal matrix")
components.append("component name={0}_w_oc type=NaturalGradientPerElementScaleComponent dim={1} {2} {3}".format(name, cell_dim, ng_per_element_scale_options, max_change_options))
components.append("# Cell input matrices : W_c* matrices")
components.append("component name={0}_W_c-xr type=NaturalGradientAffineComponent input-dim={1} output-dim={2} {3} {4}".format(name, input_dim + recurrent_projection_dim, cell_dim, ng_affine_options, max_change_options))
components.append("# Defining the non-linearities")
components.append("component name={0}_i type=SigmoidComponent dim={1} {2}".format(name, cell_dim, self_repair_nonlinearity_string))
components.append("component name={0}_f type=SigmoidComponent dim={1} {2}".format(name, cell_dim, self_repair_nonlinearity_string))
components.append("component name={0}_o type=SigmoidComponent dim={1} {2}".format(name, cell_dim, self_repair_nonlinearity_string))
components.append("component name={0}_g type=TanhComponent dim={1} {2}".format(name, cell_dim, self_repair_nonlinearity_string))
components.append("component name={0}_h type=TanhComponent dim={1} {2}".format(name, cell_dim, self_repair_nonlinearity_string))
components.append("# Defining the cell computations")
components.append("component name={0}_c1 type=ElementwiseProductComponent input-dim={1} output-dim={2}".format(name, 2 * cell_dim, cell_dim))
components.append("component name={0}_c2 type=ElementwiseProductComponent input-dim={1} output-dim={2}".format(name, 2 * cell_dim, cell_dim))
components.append("component name={0}_m type=ElementwiseProductComponent input-dim={1} output-dim={2}".format(name, 2 * cell_dim, cell_dim))
components.append("component name={0}_c type=BackpropTruncationComponent dim={1} "
"clipping-threshold={2} zeroing-threshold={3} zeroing-interval={4} "
"recurrence-interval={5}".format(name, cell_dim, clipping_threshold, zeroing_threshold,
zeroing_interval, abs(lstm_delay)))
# c1_t and c2_t defined below
component_nodes.append("component-node name={0}_c_t component={0}_c input=Sum({0}_c1_t, {0}_c2_t)".format(name))
c_tminus1_descriptor = "IfDefined(Offset({0}_c_t, {1}))".format(name, lstm_delay)
component_nodes.append("# i_t")
component_nodes.append("component-node name={0}_i1 component={0}_W_i-xr input=Append({1}, IfDefined(Offset({0}_{2}, {3})))".format(name, input_descriptor, recurrent_connection, lstm_delay))
component_nodes.append("component-node name={0}_i2 component={0}_w_ic input={1}".format(name, c_tminus1_descriptor))
component_nodes.append("component-node name={0}_i_t component={0}_i input=Sum({0}_i1, {0}_i2)".format(name))
component_nodes.append("# f_t")
component_nodes.append("component-node name={0}_f1 component={0}_W_f-xr input=Append({1}, IfDefined(Offset({0}_{2}, {3})))".format(name, input_descriptor, recurrent_connection, lstm_delay))
component_nodes.append("component-node name={0}_f2 component={0}_w_fc input={1}".format(name, c_tminus1_descriptor))
component_nodes.append("component-node name={0}_f_t component={0}_f input=Sum({0}_f1,{0}_f2)".format(name))
component_nodes.append("# o_t")
component_nodes.append("component-node name={0}_o1 component={0}_W_o-xr input=Append({1}, IfDefined(Offset({0}_{2}, {3})))".format(name, input_descriptor, recurrent_connection, lstm_delay))
component_nodes.append("component-node name={0}_o2 component={0}_w_oc input={0}_c_t".format(name))
component_nodes.append("component-node name={0}_o_t component={0}_o input=Sum({0}_o1, {0}_o2)".format(name))
component_nodes.append("# h_t")
component_nodes.append("component-node name={0}_h_t component={0}_h input={0}_c_t".format(name))
component_nodes.append("# g_t")
component_nodes.append("component-node name={0}_g1 component={0}_W_c-xr input=Append({1}, IfDefined(Offset({0}_{2}, {3})))".format(name, input_descriptor, recurrent_connection, lstm_delay))
component_nodes.append("component-node name={0}_g_t component={0}_g input={0}_g1".format(name))
component_nodes.append("# parts of c_t")
component_nodes.append("component-node name={0}_c1_t component={0}_c1 input=Append({0}_f_t, {1})".format(name, c_tminus1_descriptor))
component_nodes.append("component-node name={0}_c2_t component={0}_c2 input=Append({0}_i_t, {0}_g_t)".format(name))
component_nodes.append("# m_t")
component_nodes.append("component-node name={0}_m_t component={0}_m input=Append({0}_o_t, {0}_h_t)".format(name))
# add the recurrent connections
if (add_recurrent_projection and add_non_recurrent_projection):
components.append("# projection matrices : Wrm and Wpm")
components.append("component name={0}_W-m type=NaturalGradientAffineComponent input-dim={1} output-dim={2} {3} {4}".format(name, cell_dim, recurrent_projection_dim + non_recurrent_projection_dim, ng_affine_options, max_change_options))
components.append("component name={0}_r type=BackpropTruncationComponent dim={1} "
"clipping-threshold={2} zeroing-threshold={3} zeroing-interval={4} "
"recurrence-interval={5}".format(name, recurrent_projection_dim, clipping_threshold,
zeroing_threshold, zeroing_interval, abs(lstm_delay)))
component_nodes.append("# r_t and p_t")
component_nodes.append("component-node name={0}_rp_t component={0}_W-m input={0}_m_t".format(name))
component_nodes.append("dim-range-node name={0}_r_t_preclip input-node={0}_rp_t dim-offset=0 dim={1}".format(name, recurrent_projection_dim))
component_nodes.append("component-node name={0}_r_t component={0}_r input={0}_r_t_preclip".format(name))
output_descriptor = '{0}_rp_t'.format(name)
output_dim = recurrent_projection_dim + non_recurrent_projection_dim
elif add_recurrent_projection:
components.append("# projection matrices : Wrm")
components.append("component name={0}_Wrm type=NaturalGradientAffineComponent input-dim={1} output-dim={2} {3} {4}".format(
name, cell_dim, recurrent_projection_dim, ng_affine_options, max_change_options))
components.append("component name={0}_r type=BackpropTruncationComponent dim={1} "
"clipping-threshold={2} zeroing-threshold={3} zeroing-interval={4} "
"recurrence-interval={5}".format(name, recurrent_projection_dim, clipping_threshold,
zeroing_threshold, zeroing_interval, abs(lstm_delay)))
component_nodes.append("# r_t")
component_nodes.append("component-node name={0}_r_t_preclip component={0}_Wrm input={0}_m_t".format(name))
component_nodes.append("component-node name={0}_r_t component={0}_r input={0}_r_t_preclip".format(name))
output_descriptor = '{0}_r_t'.format(name)
output_dim = recurrent_projection_dim
else:
components.append("component name={0}_r type=BackpropTruncationComponent dim={1} "
"clipping-threshold={2} zeroing-threshold={3} zeroing-interval={4} "
"recurrence-interval={5}".format(name, cell_dim, clipping_threshold,
zeroing_threshold, zeroing_interval, abs(lstm_delay)))
component_nodes.append("component-node name={0}_r_t component={0}_r input={0}_m_t".format(name))
output_descriptor = '{0}_r_t'.format(name)
output_dim = cell_dim
return {
'descriptor': output_descriptor,
'dimension':output_dim
}
def AddBLstmLayer(config_lines,
name, input, cell_dim,
recurrent_projection_dim = 0,
non_recurrent_projection_dim = 0,
clipping_threshold = 1.0,
zeroing_threshold = 3.0,
zeroing_interval = 20,
ng_per_element_scale_options = "",
ng_affine_options = "",
lstm_delay = [-1,1],
self_repair_scale_nonlinearity = None,
max_change_per_component = 0.75):
assert(len(lstm_delay) == 2 and lstm_delay[0] < 0 and lstm_delay[1] > 0)
output_forward = AddLstmLayer(config_lines = config_lines,
name = "{0}_forward".format(name),
input = input,
cell_dim = cell_dim,
recurrent_projection_dim = recurrent_projection_dim,
non_recurrent_projection_dim = non_recurrent_projection_dim,
clipping_threshold = clipping_threshold,
zeroing_threshold = zeroing_threshold,
zeroing_interval = zeroing_interval,
ng_per_element_scale_options = ng_per_element_scale_options,
ng_affine_options = ng_affine_options,
lstm_delay = lstm_delay[0],
self_repair_scale_nonlinearity = self_repair_scale_nonlinearity,
max_change_per_component = max_change_per_component)
output_backward = AddLstmLayer(config_lines = config_lines,
name = "{0}_backward".format(name),
input = input,
cell_dim = cell_dim,
recurrent_projection_dim = recurrent_projection_dim,
non_recurrent_projection_dim = non_recurrent_projection_dim,
clipping_threshold = clipping_threshold,
zeroing_threshold = zeroing_threshold,
zeroing_interval = zeroing_interval,
ng_per_element_scale_options = ng_per_element_scale_options,
ng_affine_options = ng_affine_options,
lstm_delay = lstm_delay[1],
self_repair_scale_nonlinearity = self_repair_scale_nonlinearity,
max_change_per_component = max_change_per_component)
output_descriptor = 'Append({0}, {1})'.format(output_forward['descriptor'], output_backward['descriptor'])
output_dim = output_forward['dimension'] + output_backward['dimension']
return {
'descriptor': output_descriptor,
'dimension':output_dim
}