Blame view

egs/wsj/s5/steps/nnet3/convert_nnet2_to_nnet3.py 16.6 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
  #!/usr/bin/env python
  
  # Copyright 2017    Joachim Fainberg.
  
  # This script converts nnet2 models into nnet3 models.
  # It requires knowledge of valid components which
  # can be modified in the configuration section below.
  
  from __future__ import print_function
  import argparse, os, tempfile, logging, sys, shutil, fileinput, re
  from collections import defaultdict, namedtuple
  import numpy as np
  sys.path.insert(0, 'steps/')
  import libs.nnet3.train.common as common_train_lib
  import libs.common as common_lib
  
  # Begin configuration section
  # Components and their corresponding node names
  
  NODE_NAMES = {
      "<AffineComponent>":"affine",
      "<AffineComponentPreconditioned>":"affine",
      "<AffineComponentPreconditionedOnline>":"affine",
      "<BlockAffineComponent>":"affine",
      "<BlockAffineComponentPreconditioned>":"affine",
      "<SigmoidComponent>":"nonlin",
      "<TanhComponent>":"nonlin",
      "<PowerComponent>":"nonlin",
      "<RectifiedLinearComponent>":"nonlin",
      "<SoftHingeComponent>":"nonlin",
      "<PnormComponent>":"nonlin",
      "<NormalizeComponent>":"renorm",
      "<MaxoutComponent>":"maxout",
      "<MaxpoolingComponent>":"maxpool",
      "<ScaleComponent>":"rescale",
      "<DropoutComponent>":"dropout",
      "<SoftmaxComponent>":"softmax",
      "<LogSoftmaxComponent>":"log-softmax",
      "<FixedScaleComponent>":"fixed-scale",
      "<FixedAffineComponent>":"fixed-affine",
      "<FixedLinearComponent>":"fixed-linear",
      "<FixedBiasComponent>":"fixed-bias",
      "<PermuteComponent>":"permute",
      "<AdditiveNoiseComponent>":"noise",
      "<Convolutional1dComponent>":"conv",
      "<SumGroupComponent>":"sum-group",
      "<DctComponent>":"dct",
      "<SpliceComponent>":"splice",
      "<SpliceMaxComponent>":"splice"
  }
  
  SPLICE_COMPONENTS = [c for c in NODE_NAMES if "Splice" in c]
  AFFINE_COMPONENTS = [c for c in NODE_NAMES if "Affine" in c]
  
  KNOWN_COMPONENTS = list(NODE_NAMES.keys())
  # End configuration section
  
  logger = logging.getLogger(__name__)
  logger.setLevel(logging.INFO)
  handler = logging.StreamHandler()
  handler.setLevel(logging.INFO)
  formatter = logging.Formatter("%(asctime)s [%(filename)s:%(lineno)s - "
                                "%(funcName)s - %(levelname)s ] %(message)s")
  handler.setFormatter(formatter)
  logger.addHandler(handler)
  
  def GetArgs():
      parser = argparse.ArgumentParser(
          description="Converts nnet2 into nnet3 models.",
          epilog="""e.g. steps/nnet3/convert_nnet2_to_nnet3.py 
                    exp/tri4_nnet2 exp/tri4_nnet3""")
      parser.add_argument("--tmpdir", type=str, default="./",
                          help="Custom location for the temporary directory.")
      parser.add_argument("--skip-cleanup", action='store_true',
                          help="Will not remove the temporary directory.")
      parser.add_argument("--model", type=str, default='final.mdl',
                          help="Choose a specific model to convert.")
      parser.add_argument("--binary", type=str, default="true", 
                          choices=["true","false"], 
                          help="Whether to write the model in binary or not.")
      parser.add_argument("nnet2_dir", metavar="src-nnet2-dir", type=str,
                          help="")
      parser.add_argument("nnet3_dir", metavar="src-nnet3-dir", type=str,
                          help="")
  
      print(' '.join(sys.argv))
  
      args = parser.parse_args()
  
      if not os.path.exists(args.nnet3_dir):
          os.makedirs(args.nnet3_dir)
      if args.tmpdir and not os.path.exists(args.tmpdir):
          os.makedirs(args.tmpdir)
  
      return args
  
  class Nnet3Model(object):
      """Holds configuration for an Nnet3 model."""
      
      def __init__(self):
          self.input_dim = -1
          self.output_dim = -1
          self.ivector_dim = -1
          self.counts = defaultdict(int)
          self.num_components = 0
          self.components_read = 0
          self.config = ""
          self.transition_model = ""
          self.priors = ""
          self.components = []
  
      def add_component(self, component, pairs):
          """Adds components to the model. 
          
          Takes a dictionary of key-value pairs.
          """
          self.components_read += 1
  
          Component = namedtuple("Component", "ident component pairs")
  
          if "<InputDim>" in pairs and self.input_dim == -1:
              self.input_dim = int(pairs["<InputDim>"])
  
          if "<ConstComponentDim>" in pairs and self.ivector_dim == -1:
              self.ivector_dim = int(pairs["<ConstComponentDim>"])
  
          # remove nnet2 specific tokens and catch descriptors
          if component == "<PnormComponent>" and "<P>" in pairs:
              pairs.pop("<P>")
          elif component in SPLICE_COMPONENTS:
              self.components.append(Component("splice", component, pairs))
              return
  
          # format pairs: {'<InputDim>':43} -> {'input-dim':43}
          pairs = ["{0}={1}".format(token_to_string(key), pairs[key]) for key in pairs]
          
          # keep track of layer type number (e.g. affine3)
          node_name = NODE_NAMES[component]
          self.counts[node_name] += 1
  
          # e.g. affine3
          ident = node_name + str(self.counts[node_name])
  
          # <PnormComponent> -> PnormComponent
          component = component[1:-1]
  
          self.components.append(Component(ident, component, pairs))
  
      def write_config(self, filename):
          """Write config to filename."""
          logger.info("Writing config to {0}".format(filename))
  
          self.config = filename
          with open(filename, 'w') as f:
              for component in self.components:
                  if component.ident == "splice":
                      continue
                  config_string = ' '.join(component.pairs)
  
                  f.write("component name={name} type={comp_type} {config_string}"
                          "
  ".format(name=component.ident, 
                                      comp_type=component.component, 
                                      config_string=config_string))
  
              f.write("
  # Component nodes
  ")
              if self.ivector_dim != -1:
                  f.write("input-node name=input dim={0}
  ".format(self.input_dim-self.ivector_dim))
                  f.write("input-node name=ivector dim={0}
  ".format(self.ivector_dim))
              else:
                  f.write("input-node name=input dim={0}
  ".format(self.input_dim))
              previous_component = "input"
              for component in self.components:
                  if component.ident == "splice":
                      # Create splice string for the next node
                      previous_component = make_splice_string(previous_component, 
                                                     component.pairs["<Context>"],
                                                     component.pairs["<ConstComponentDim>"])
                      continue
                  f.write("component-node name={name} component={name} "
                          "input={inp}
  ".format(name=component.ident, 
                                                 inp=previous_component))
                  previous_component = component.ident
              logger.warning("Assuming linear objective.")
              f.write("output-node name=output input={inp} objective={obj}"
                      "
  ".format(inp=previous_component, obj='linear'))
  
      def write_model(self, model, binary="true"):
          if not os.path.exists(self.config):
              raise IOError("Config file {0} does not exist.".format(self.config))
  
          # write raw model
          common_lib.execute_command("nnet3-init --binary=true {0} {1}"
              .format(self.config, os.path.join(tmpdir, "nnet3.raw")))
  
          # add transition model
          common_lib.execute_command("nnet3-am-init --binary=true {0} {1} {2}"
              .format(self.transition_model, os.path.join(tmpdir, "nnet3.raw"),
                      os.path.join(tmpdir, "nnet3_no_prior.mdl")))
  
          # add priors
          common_lib.execute_command("nnet3-am-adjust-priors "
                                       "--binary={0} {1} {2} {3}"
              .format(binary, os.path.join(tmpdir, "nnet3_no_prior.mdl"), 
                      self.priors, model))
  
  def parse_nnet2_to_nnet3(line_buffer):
      """Reads an Nnet2 model into an Nnet3 object.
  
      Parses by passing line_buffer objects depending upon the
      current place or component being read.
  
      Returns Nnet3 object.
      """
      model = Nnet3Model()
  
      # <TransitionModel> ...
      model.transition_model = parse_transition_model(line_buffer)
      
      # <Nnet> <NumComponents> ...
      line, model.num_components = parse_nnet2_header(line_buffer)
  
      # Parse remaining components
      while True:
          if line.startswith("</Components>"):
              break
          component, pairs = parse_component(line, line_buffer)
          model.add_component(component, pairs)
          line = next(line_buffer)
  
      model.priors = parse_priors(line, line_buffer)
      
      if model.components_read != model.num_components:
          logger.error("Did not read all components succesfully: {0}/{1}"
                       .format(model.components_read, model.num_components))
  
      return model
  
  def parse_transition_model(line_buffer):
      """Writes transition model to text file.
      
      Returns filename.
      """
      line = next(line_buffer)
      assert line.startswith("<TransitionModel>")
  
      transition_model = os.path.join(tmpdir, "transition_model")
  
      with open(transition_model, 'w') as fc:
          fc.write(line)
          
          while True:
              line = next(line_buffer)
              fc.write(line)
              if line.startswith("</TransitionModel>"):
                  break
  
          return transition_model
  
  def parse_nnet2_header(line_buffer):
      """Returns number of components in Nnet2 header."""
      line = next(line_buffer)
      assert line.startswith("<Nnet>")
  
      line = consume_token("<Nnet>", line)
      num_components = int(line.split()[1])
      line = line.partition(str(num_components))[2]
      line = consume_token("<Components>", line)
  
      return line, num_components 
                  
  def parse_component(line, line_buffer):
      component = line.split()[0]
      pairs = {}
  
      if component in SPLICE_COMPONENTS:
          line, pairs = parse_splice_component(component, line, line_buffer)
      elif component in AFFINE_COMPONENTS:
          pairs = parse_affine_component(component, line, line_buffer)
      elif component == "<FixedScaleComponent>":
          pairs = parse_fixed_scale_component(component, line, line_buffer)
      elif component == "<FixedBiasComponent>":
          pairs = parse_fixed_bias_component(component, line, line_buffer)
      elif component == "<SumGroupComponent>":
          pairs = parse_sum_group_component(component, line, line_buffer)
      elif component in KNOWN_COMPONENTS:
          pairs = parse_standard_component(component, line, line_buffer)
      else:
          raise LookupError("Unrecognised component, {0}.".format(component))
  
      parse_end_of_component(component, line, line_buffer)
  
      return component, pairs
  
  def parse_standard_component(component, line, line_buffer):
      # Ignores stats such as ValueSum and DerivSum
      line = consume_token(component, line)
      pairs = re.findall("(<\w+>) ([\w.]+)", line)
  
      return dict(pairs)
  
  def parse_fixed_scale_component(component, line, line_buffer):
      line = consume_token(component, line)
      line = consume_token("<Scales>", line)
  
      scales = np.array([parse_vector(line)])
  
      _, filename = tempfile.mkstemp(dir=tmpdir)
      with open(filename, 'w') as f:
          f.write("[ ")
          np.savetxt(f, scales, newline='')
          f.write(" ]")
  
      return {"<Scales>" : filename}
  
  def parse_sum_group_component(component, line, line_buffer):
      line = consume_token(component, line)
      line = consume_token("<Sizes>", line)
  
      sizes = line.strip().strip("[]").strip().replace(' ', ',')
  
      return {"<Sizes>" : sizes}
  
  def parse_fixed_bias_component(component, line, line_buffer):
      line = consume_token(component, line)
      line = consume_token("<Bias>", line)
  
      scales = np.array([parse_vector(line)])
  
      _, filename = tempfile.mkstemp(dir=tmpdir)
      with open(filename, 'w') as f:
          f.write("[ ")
          np.savetxt(f, scales, newline='')
          f.write(" ]")
  
      return {"<Bias>" : filename}
  
  def parse_splice_component(component, line, line_buffer):
      if component == "<SpliceMaxComponent>":
          raise NotImplementedError("Script doesn't support SpliceMaxComponent.")
  
      line = consume_token(component, line)
      line = consume_token("<InputDim>", line)
      [input_dim, _, line] = line.strip().partition(' ')
      line = consume_token("<Context>", line)
      context = line.strip()[1:-1].split()
  
      const_component_dim = 0
      line = next(line_buffer) # Context vector adds newline
      line = consume_token("<ConstComponentDim>", line)
      const_component_dim = int(line.strip().split()[0])
  
      return line, {"<InputDim>" : input_dim, "<Context>" : context, 
              "<ConstComponentDim>" : const_component_dim}
  
  def parse_end_of_component(component, line, line_buffer):
      # Keeps reading until it hits the end tag for component
      end_component = "</" + component[1:]
  
      while end_component not in line:
          line = next(line_buffer)
  
      return
  
  def parse_affine_component(component, line, line_buffer):
      assert ("<LinearParams>" in line)
  
      pairs = dict(re.findall("(<\w+>) ([\w.]+)", line))
  
      # read the linear params and bias and convert it to a matrix
      weights = parse_weights(line_buffer)
      bias = parse_bias(next(line_buffer))
  
      matrix = np.concatenate([weights, bias.T], axis=1)
  
      # write matrix and return pairs with filename
      _, filename = tempfile.mkstemp(dir=tmpdir)
      with open(filename, 'w') as f:
          f.write("[ ")
          np.savetxt(f, matrix)
          f.write(" ]")
  
      pairs["<Matrix>"] = filename
  
      return pairs
  
  def parse_weights(line_buffer):
      weights = []
  
      while True:
          line = next(line_buffer)
  
          if line.strip().endswith("["):
              continue
          elif line.strip().endswith("]"):
              weights.append(parse_vector(line))
              break
          else:
              weights.append(parse_vector(line))
  
      return np.array(weights)
  
  def parse_bias(line):
      if "<BiasParams>" in line:
          line = consume_token("<BiasParams>", line)
  
      return np.array([parse_vector(line)])
  
  def parse_vector(line):
      vector = line.strip().strip("[]")
      return np.array([float(x) for x in vector.split()], dtype="float32")
  
  def parse_priors(line, line_buffer):
      vector = parse_vector(line.partition('[')[2])
      priors = os.path.join(tmpdir, "priors")
  
      with open(priors, 'w') as f:
          f.write("[ ")
          np.savetxt(f, vector, newline=' ')
          f.write(" ]")
  
      return priors
  
  def token_to_string(token):
      """Converts tokens to lowercase, hyphen-bounded strings.
  
      E.g. <InputDim> -> input-dim
      """
      string = token[1:-1]
      string = re.sub(r"((?<=[a-z])[A-Z]|(?<!\A)[A-Z](?=[a-z]))", r'-\1', string).lower()
      return string
  
  def consume_token(token, line):
      """Returns line without token"""
      if token != line.split(None, 1)[0]:
          logger.error("Unexpected token, expected '{0}', got '{1}'."
                .format(token, line.split(None, 1)[0]))
  
      return line.partition(token)[2]
  
  def make_splice_string(nodename, context, const_component_dim=0):
      """Generates splice string from a list of context.
  
      E.g. make_splice_string("renorm4", [-4, 4])
      returns "Append(Offset(renorm4, -4), Offset(renorm4, 4))"
      """
      assert type(context) == list, "context argument must be a list"
      string = ["Offset({0}, {1})".format(nodename, i) for i in context]
      if const_component_dim > 0:
          string.append("ReplaceIndex(ivector, t, 0)")
      string = "Append(" + ", ".join(string) + ")"
      return string
  
  tmpdir = ""
  
  def Main():
      args = GetArgs()
      logger.info("Converting nnet2 model {0} to nnet3 model {1}"
                  .format(os.path.join(args.nnet2_dir, args.model), 
                          os.path.join(args.nnet3_dir, args.model)))
      global tmpdir
      tmpdir = tempfile.mkdtemp(dir=args.tmpdir) 
  
      # Convert nnet2 model to text and remove preconditioning
      common_lib.execute_command("nnet-am-copy "
              "--remove-preconditioning=true --binary=false {0}/{1} {2}/{1}"
              .format(args.nnet2_dir, args.model, tmpdir))
  
      # Parse nnet2 and return nnet3 object
      with open(os.path.join(tmpdir, args.model)) as f:
          nnet3 = parse_nnet2_to_nnet3(f)
  
      # Write model
      nnet3.write_config(os.path.join(tmpdir, "config"))
      nnet3.write_model(os.path.join(args.nnet3_dir, args.model), 
                        binary=args.binary)
          
      if not args.skip_cleanup:
          shutil.rmtree(tmpdir)
      else:
          logger.info("Not removing temporary directory {0}".format(tmpdir))
       
      logger.info("Wrote nnet3 model to {0}".format(os.path.join(args.nnet3_dir, 
                                                    args.model)))
  
  if __name__ == "__main__":
      Main()