convert_nnet2_to_nnet3.py 16.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
#!/usr/bin/env python

# Copyright 2017    Joachim Fainberg.

# This script converts nnet2 models into nnet3 models.
# It requires knowledge of valid components which
# can be modified in the configuration section below.

from __future__ import print_function
import argparse, os, tempfile, logging, sys, shutil, fileinput, re
from collections import defaultdict, namedtuple
import numpy as np
sys.path.insert(0, 'steps/')
import libs.nnet3.train.common as common_train_lib
import libs.common as common_lib

# Begin configuration section
# Components and their corresponding node names

NODE_NAMES = {
    "<AffineComponent>":"affine",
    "<AffineComponentPreconditioned>":"affine",
    "<AffineComponentPreconditionedOnline>":"affine",
    "<BlockAffineComponent>":"affine",
    "<BlockAffineComponentPreconditioned>":"affine",
    "<SigmoidComponent>":"nonlin",
    "<TanhComponent>":"nonlin",
    "<PowerComponent>":"nonlin",
    "<RectifiedLinearComponent>":"nonlin",
    "<SoftHingeComponent>":"nonlin",
    "<PnormComponent>":"nonlin",
    "<NormalizeComponent>":"renorm",
    "<MaxoutComponent>":"maxout",
    "<MaxpoolingComponent>":"maxpool",
    "<ScaleComponent>":"rescale",
    "<DropoutComponent>":"dropout",
    "<SoftmaxComponent>":"softmax",
    "<LogSoftmaxComponent>":"log-softmax",
    "<FixedScaleComponent>":"fixed-scale",
    "<FixedAffineComponent>":"fixed-affine",
    "<FixedLinearComponent>":"fixed-linear",
    "<FixedBiasComponent>":"fixed-bias",
    "<PermuteComponent>":"permute",
    "<AdditiveNoiseComponent>":"noise",
    "<Convolutional1dComponent>":"conv",
    "<SumGroupComponent>":"sum-group",
    "<DctComponent>":"dct",
    "<SpliceComponent>":"splice",
    "<SpliceMaxComponent>":"splice"
}

SPLICE_COMPONENTS = [c for c in NODE_NAMES if "Splice" in c]
AFFINE_COMPONENTS = [c for c in NODE_NAMES if "Affine" in c]

KNOWN_COMPONENTS = list(NODE_NAMES.keys())
# End configuration section

logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
handler = logging.StreamHandler()
handler.setLevel(logging.INFO)
formatter = logging.Formatter("%(asctime)s [%(filename)s:%(lineno)s - "
                              "%(funcName)s - %(levelname)s ] %(message)s")
handler.setFormatter(formatter)
logger.addHandler(handler)

def GetArgs():
    parser = argparse.ArgumentParser(
        description="Converts nnet2 into nnet3 models.",
        epilog="""e.g. steps/nnet3/convert_nnet2_to_nnet3.py 
                  exp/tri4_nnet2 exp/tri4_nnet3""")
    parser.add_argument("--tmpdir", type=str, default="./",
                        help="Custom location for the temporary directory.")
    parser.add_argument("--skip-cleanup", action='store_true',
                        help="Will not remove the temporary directory.")
    parser.add_argument("--model", type=str, default='final.mdl',
                        help="Choose a specific model to convert.")
    parser.add_argument("--binary", type=str, default="true", 
                        choices=["true","false"], 
                        help="Whether to write the model in binary or not.")
    parser.add_argument("nnet2_dir", metavar="src-nnet2-dir", type=str,
                        help="")
    parser.add_argument("nnet3_dir", metavar="src-nnet3-dir", type=str,
                        help="")

    print(' '.join(sys.argv))

    args = parser.parse_args()

    if not os.path.exists(args.nnet3_dir):
        os.makedirs(args.nnet3_dir)
    if args.tmpdir and not os.path.exists(args.tmpdir):
        os.makedirs(args.tmpdir)

    return args

class Nnet3Model(object):
    """Holds configuration for an Nnet3 model."""
    
    def __init__(self):
        self.input_dim = -1
        self.output_dim = -1
        self.ivector_dim = -1
        self.counts = defaultdict(int)
        self.num_components = 0
        self.components_read = 0
        self.config = ""
        self.transition_model = ""
        self.priors = ""
        self.components = []

    def add_component(self, component, pairs):
        """Adds components to the model. 
        
        Takes a dictionary of key-value pairs.
        """
        self.components_read += 1

        Component = namedtuple("Component", "ident component pairs")

        if "<InputDim>" in pairs and self.input_dim == -1:
            self.input_dim = int(pairs["<InputDim>"])

        if "<ConstComponentDim>" in pairs and self.ivector_dim == -1:
            self.ivector_dim = int(pairs["<ConstComponentDim>"])

        # remove nnet2 specific tokens and catch descriptors
        if component == "<PnormComponent>" and "<P>" in pairs:
            pairs.pop("<P>")
        elif component in SPLICE_COMPONENTS:
            self.components.append(Component("splice", component, pairs))
            return

        # format pairs: {'<InputDim>':43} -> {'input-dim':43}
        pairs = ["{0}={1}".format(token_to_string(key), pairs[key]) for key in pairs]
        
        # keep track of layer type number (e.g. affine3)
        node_name = NODE_NAMES[component]
        self.counts[node_name] += 1

        # e.g. affine3
        ident = node_name + str(self.counts[node_name])

        # <PnormComponent> -> PnormComponent
        component = component[1:-1]

        self.components.append(Component(ident, component, pairs))

    def write_config(self, filename):
        """Write config to filename."""
        logger.info("Writing config to {0}".format(filename))

        self.config = filename
        with open(filename, 'w') as f:
            for component in self.components:
                if component.ident == "splice":
                    continue
                config_string = ' '.join(component.pairs)

                f.write("component name={name} type={comp_type} {config_string}"
                        "\n".format(name=component.ident, 
                                    comp_type=component.component, 
                                    config_string=config_string))

            f.write("\n# Component nodes\n")
            if self.ivector_dim != -1:
                f.write("input-node name=input dim={0}\n".format(self.input_dim-self.ivector_dim))
                f.write("input-node name=ivector dim={0}\n".format(self.ivector_dim))
            else:
                f.write("input-node name=input dim={0}\n".format(self.input_dim))
            previous_component = "input"
            for component in self.components:
                if component.ident == "splice":
                    # Create splice string for the next node
                    previous_component = make_splice_string(previous_component, 
                                                   component.pairs["<Context>"],
                                                   component.pairs["<ConstComponentDim>"])
                    continue
                f.write("component-node name={name} component={name} "
                        "input={inp}\n".format(name=component.ident, 
                                               inp=previous_component))
                previous_component = component.ident
            logger.warning("Assuming linear objective.")
            f.write("output-node name=output input={inp} objective={obj}"
                    "\n".format(inp=previous_component, obj='linear'))

    def write_model(self, model, binary="true"):
        if not os.path.exists(self.config):
            raise IOError("Config file {0} does not exist.".format(self.config))

        # write raw model
        common_lib.execute_command("nnet3-init --binary=true {0} {1}"
            .format(self.config, os.path.join(tmpdir, "nnet3.raw")))

        # add transition model
        common_lib.execute_command("nnet3-am-init --binary=true {0} {1} {2}"
            .format(self.transition_model, os.path.join(tmpdir, "nnet3.raw"),
                    os.path.join(tmpdir, "nnet3_no_prior.mdl")))

        # add priors
        common_lib.execute_command("nnet3-am-adjust-priors "
                                     "--binary={0} {1} {2} {3}"
            .format(binary, os.path.join(tmpdir, "nnet3_no_prior.mdl"), 
                    self.priors, model))

def parse_nnet2_to_nnet3(line_buffer):
    """Reads an Nnet2 model into an Nnet3 object.

    Parses by passing line_buffer objects depending upon the
    current place or component being read.

    Returns Nnet3 object.
    """
    model = Nnet3Model()

    # <TransitionModel> ...
    model.transition_model = parse_transition_model(line_buffer)
    
    # <Nnet> <NumComponents> ...
    line, model.num_components = parse_nnet2_header(line_buffer)

    # Parse remaining components
    while True:
        if line.startswith("</Components>"):
            break
        component, pairs = parse_component(line, line_buffer)
        model.add_component(component, pairs)
        line = next(line_buffer)

    model.priors = parse_priors(line, line_buffer)
    
    if model.components_read != model.num_components:
        logger.error("Did not read all components succesfully: {0}/{1}"
                     .format(model.components_read, model.num_components))

    return model

def parse_transition_model(line_buffer):
    """Writes transition model to text file.
    
    Returns filename.
    """
    line = next(line_buffer)
    assert line.startswith("<TransitionModel>")

    transition_model = os.path.join(tmpdir, "transition_model")

    with open(transition_model, 'w') as fc:
        fc.write(line)
        
        while True:
            line = next(line_buffer)
            fc.write(line)
            if line.startswith("</TransitionModel>"):
                break

        return transition_model

def parse_nnet2_header(line_buffer):
    """Returns number of components in Nnet2 header."""
    line = next(line_buffer)
    assert line.startswith("<Nnet>")

    line = consume_token("<Nnet>", line)
    num_components = int(line.split()[1])
    line = line.partition(str(num_components))[2]
    line = consume_token("<Components>", line)

    return line, num_components 
                
def parse_component(line, line_buffer):
    component = line.split()[0]
    pairs = {}

    if component in SPLICE_COMPONENTS:
        line, pairs = parse_splice_component(component, line, line_buffer)
    elif component in AFFINE_COMPONENTS:
        pairs = parse_affine_component(component, line, line_buffer)
    elif component == "<FixedScaleComponent>":
        pairs = parse_fixed_scale_component(component, line, line_buffer)
    elif component == "<FixedBiasComponent>":
        pairs = parse_fixed_bias_component(component, line, line_buffer)
    elif component == "<SumGroupComponent>":
        pairs = parse_sum_group_component(component, line, line_buffer)
    elif component in KNOWN_COMPONENTS:
        pairs = parse_standard_component(component, line, line_buffer)
    else:
        raise LookupError("Unrecognised component, {0}.".format(component))

    parse_end_of_component(component, line, line_buffer)

    return component, pairs

def parse_standard_component(component, line, line_buffer):
    # Ignores stats such as ValueSum and DerivSum
    line = consume_token(component, line)
    pairs = re.findall("(<\w+>) ([\w.]+)", line)

    return dict(pairs)

def parse_fixed_scale_component(component, line, line_buffer):
    line = consume_token(component, line)
    line = consume_token("<Scales>", line)

    scales = np.array([parse_vector(line)])

    _, filename = tempfile.mkstemp(dir=tmpdir)
    with open(filename, 'w') as f:
        f.write("[ ")
        np.savetxt(f, scales, newline='')
        f.write(" ]")

    return {"<Scales>" : filename}

def parse_sum_group_component(component, line, line_buffer):
    line = consume_token(component, line)
    line = consume_token("<Sizes>", line)

    sizes = line.strip().strip("[]").strip().replace(' ', ',')

    return {"<Sizes>" : sizes}

def parse_fixed_bias_component(component, line, line_buffer):
    line = consume_token(component, line)
    line = consume_token("<Bias>", line)

    scales = np.array([parse_vector(line)])

    _, filename = tempfile.mkstemp(dir=tmpdir)
    with open(filename, 'w') as f:
        f.write("[ ")
        np.savetxt(f, scales, newline='')
        f.write(" ]")

    return {"<Bias>" : filename}

def parse_splice_component(component, line, line_buffer):
    if component == "<SpliceMaxComponent>":
        raise NotImplementedError("Script doesn't support SpliceMaxComponent.")

    line = consume_token(component, line)
    line = consume_token("<InputDim>", line)
    [input_dim, _, line] = line.strip().partition(' ')
    line = consume_token("<Context>", line)
    context = line.strip()[1:-1].split()

    const_component_dim = 0
    line = next(line_buffer) # Context vector adds newline
    line = consume_token("<ConstComponentDim>", line)
    const_component_dim = int(line.strip().split()[0])

    return line, {"<InputDim>" : input_dim, "<Context>" : context, 
            "<ConstComponentDim>" : const_component_dim}

def parse_end_of_component(component, line, line_buffer):
    # Keeps reading until it hits the end tag for component
    end_component = "</" + component[1:]

    while end_component not in line:
        line = next(line_buffer)

    return

def parse_affine_component(component, line, line_buffer):
    assert ("<LinearParams>" in line)

    pairs = dict(re.findall("(<\w+>) ([\w.]+)", line))

    # read the linear params and bias and convert it to a matrix
    weights = parse_weights(line_buffer)
    bias = parse_bias(next(line_buffer))

    matrix = np.concatenate([weights, bias.T], axis=1)

    # write matrix and return pairs with filename
    _, filename = tempfile.mkstemp(dir=tmpdir)
    with open(filename, 'w') as f:
        f.write("[ ")
        np.savetxt(f, matrix)
        f.write(" ]")

    pairs["<Matrix>"] = filename

    return pairs

def parse_weights(line_buffer):
    weights = []

    while True:
        line = next(line_buffer)

        if line.strip().endswith("["):
            continue
        elif line.strip().endswith("]"):
            weights.append(parse_vector(line))
            break
        else:
            weights.append(parse_vector(line))

    return np.array(weights)

def parse_bias(line):
    if "<BiasParams>" in line:
        line = consume_token("<BiasParams>", line)

    return np.array([parse_vector(line)])

def parse_vector(line):
    vector = line.strip().strip("[]")
    return np.array([float(x) for x in vector.split()], dtype="float32")

def parse_priors(line, line_buffer):
    vector = parse_vector(line.partition('[')[2])
    priors = os.path.join(tmpdir, "priors")

    with open(priors, 'w') as f:
        f.write("[ ")
        np.savetxt(f, vector, newline=' ')
        f.write(" ]")

    return priors

def token_to_string(token):
    """Converts tokens to lowercase, hyphen-bounded strings.

    E.g. <InputDim> -> input-dim
    """
    string = token[1:-1]
    string = re.sub(r"((?<=[a-z])[A-Z]|(?<!\A)[A-Z](?=[a-z]))", r'-\1', string).lower()
    return string

def consume_token(token, line):
    """Returns line without token"""
    if token != line.split(None, 1)[0]:
        logger.error("Unexpected token, expected '{0}', got '{1}'."
              .format(token, line.split(None, 1)[0]))

    return line.partition(token)[2]

def make_splice_string(nodename, context, const_component_dim=0):
    """Generates splice string from a list of context.

    E.g. make_splice_string("renorm4", [-4, 4])
    returns "Append(Offset(renorm4, -4), Offset(renorm4, 4))"
    """
    assert type(context) == list, "context argument must be a list"
    string = ["Offset({0}, {1})".format(nodename, i) for i in context]
    if const_component_dim > 0:
        string.append("ReplaceIndex(ivector, t, 0)")
    string = "Append(" + ", ".join(string) + ")"
    return string

tmpdir = ""

def Main():
    args = GetArgs()
    logger.info("Converting nnet2 model {0} to nnet3 model {1}"
                .format(os.path.join(args.nnet2_dir, args.model), 
                        os.path.join(args.nnet3_dir, args.model)))
    global tmpdir
    tmpdir = tempfile.mkdtemp(dir=args.tmpdir) 

    # Convert nnet2 model to text and remove preconditioning
    common_lib.execute_command("nnet-am-copy "
            "--remove-preconditioning=true --binary=false {0}/{1} {2}/{1}"
            .format(args.nnet2_dir, args.model, tmpdir))

    # Parse nnet2 and return nnet3 object
    with open(os.path.join(tmpdir, args.model)) as f:
        nnet3 = parse_nnet2_to_nnet3(f)

    # Write model
    nnet3.write_config(os.path.join(tmpdir, "config"))
    nnet3.write_model(os.path.join(args.nnet3_dir, args.model), 
                      binary=args.binary)
        
    if not args.skip_cleanup:
        shutil.rmtree(tmpdir)
    else:
        logger.info("Not removing temporary directory {0}".format(tmpdir))
     
    logger.info("Wrote nnet3 model to {0}".format(os.path.join(args.nnet3_dir, 
                                                  args.model)))

if __name__ == "__main__":
    Main()