Blame view
egs/wsj/s5/steps/nnet3/decode_looped.sh
5.48 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
#!/bin/bash # Copyright 2012-2015 Johns Hopkins University (Author: Daniel Povey). # Apache 2.0. # This is like decode.sh except it uses "looped" decoding. This is an nnet3 # mechanism for reusing previously computed activations when we evaluate the # neural net for successive chunks of data. It is applicable to TDNNs and LSTMs # and similar forward-recurrent topologies, but not to backward-recurrent # topologies like BLSTMs. Be careful because the script itself does not have a # way to figure out what kind of topology you are using. # # Also be aware that this decoding mechanism means that you have effectively # unlimited context within the utterance. Unless your models were trained (at # least partly) on quite large chunk-sizes, e.g. 100 or more (although the # longer the BLSTM recurrence the larger chunk-size you'd need in training), # there is a possibility that this effectively infinite left-context will cause # a mismatch with the training condition. Also, for recurrent topologies, you may want to make sure # that the --extra-left-context-initial matches the --egs.chunk-left-context-initial # that you trained with, . [note: if not specified during training, it defaults to # the same as the regular --extra-left-context # This script does decoding with a neural-net. # Begin configuration section. stage=1 nj=4 # number of decoding jobs. acwt=0.1 # Just a default value, used for adaptation and beam-pruning.. post_decode_acwt=1.0 # can be used in 'chain' systems to scale acoustics by 10 so the # regular scoring script works. cmd=run.pl beam=15.0 frames_per_chunk=50 max_active=7000 min_active=200 ivector_scale=1.0 lattice_beam=8.0 # Beam we use in lattice generation. iter=final scoring_opts= skip_diagnostics=false skip_scoring=false extra_left_context_initial=0 online_ivector_dir= minimize=false # End configuration section. echo "$0 $@" # Print the command line for logging [ -f ./path.sh ] && . ./path.sh; # source the path. . parse_options.sh || exit 1; if [ $# -ne 3 ]; then echo "Usage: $0 [options] <graph-dir> <data-dir> <decode-dir>" echo "e.g.: steps/nnet3/decode.sh --nj 8 \\" echo "--online-ivector-dir exp/nnet2_online/ivectors_test_eval92 \\" echo " exp/tri4b/graph_bg data/test_eval92_hires $dir/decode_bg_eval92" echo "main options (for others, see top of script file)" echo " --config <config-file> # config containing options" echo " --nj <nj> # number of parallel jobs" echo " --cmd <cmd> # Command to run in parallel with" echo " --beam <beam> # Decoding beam; default 15.0" echo " --iter <iter> # Iteration of model to decode; default is final." echo " --scoring-opts <string> # options to local/score.sh" exit 1; fi graphdir=$1 data=$2 dir=$3 srcdir=`dirname $dir`; # Assume model directory one level up from decoding directory. model=$srcdir/$iter.mdl [ ! -z "$online_ivector_dir" ] && \ extra_files="$online_ivector_dir/ivector_online.scp $online_ivector_dir/ivector_period" for f in $graphdir/HCLG.fst $data/feats.scp $model $extra_files; do [ ! -f $f ] && echo "$0: no such file $f" && exit 1; done sdata=$data/split$nj; cmvn_opts=`cat $srcdir/cmvn_opts` || exit 1; mkdir -p $dir/log [[ -d $sdata && $data/feats.scp -ot $sdata ]] || split_data.sh $data $nj || exit 1; echo $nj > $dir/num_jobs ## Set up features. echo "$0: feature type is raw" splice_opts=`cat $srcdir/splice_opts 2>/dev/null` feats="ark,s,cs:apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- |" if [ ! -z "$online_ivector_dir" ]; then ivector_period=$(cat $online_ivector_dir/ivector_period) || exit 1; ivector_opts="--online-ivectors=scp:$online_ivector_dir/ivector_online.scp --online-ivector-period=$ivector_period" fi if [ "$post_decode_acwt" == 1.0 ]; then lat_wspecifier="ark:|gzip -c >$dir/lat.JOB.gz" else lat_wspecifier="ark:|lattice-scale --acoustic-scale=$post_decode_acwt ark:- ark:- | gzip -c >$dir/lat.JOB.gz" fi frame_subsampling_opt= if [ -f $srcdir/frame_subsampling_factor ]; then # e.g. for 'chain' systems frame_subsampling_opt="--frame-subsampling-factor=$(cat $srcdir/frame_subsampling_factor)" fi if [ $stage -le 1 ]; then $cmd JOB=1:$nj $dir/log/decode.JOB.log \ nnet3-latgen-faster-looped $ivector_opts $frame_subsampling_opt \ --frames-per-chunk=$frames_per_chunk \ --extra-left-context-initial=$extra_left_context_initial \ --minimize=$minimize --max-active=$max_active --min-active=$min_active --beam=$beam \ --lattice-beam=$lattice_beam --acoustic-scale=$acwt --allow-partial=true \ --word-symbol-table=$graphdir/words.txt "$model" \ $graphdir/HCLG.fst "$feats" "$lat_wspecifier" || exit 1; fi if [ $stage -le 2 ]; then if ! $skip_diagnostics ; then [ ! -z $iter ] && iter_opt="--iter $iter" steps/diagnostic/analyze_lats.sh --cmd "$cmd" $iter_opt $graphdir $dir fi fi # The output of this script is the files "lat.*.gz"-- we'll rescore this at # different acoustic scales to get the final output. if [ $stage -le 3 ]; then if ! $skip_scoring ; then [ ! -x local/score.sh ] && \ echo "Not scoring because local/score.sh does not exist or not executable." && exit 1; echo "score best paths" [ "$iter" != "final" ] local/score.sh $scoring_opts --cmd "$cmd" $data $graphdir $dir echo "score confidence and timing with sclite" fi fi echo "Decoding done." exit 0; |