decode_looped.sh
5.48 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
#!/bin/bash
# Copyright 2012-2015 Johns Hopkins University (Author: Daniel Povey).
# Apache 2.0.
# This is like decode.sh except it uses "looped" decoding. This is an nnet3
# mechanism for reusing previously computed activations when we evaluate the
# neural net for successive chunks of data. It is applicable to TDNNs and LSTMs
# and similar forward-recurrent topologies, but not to backward-recurrent
# topologies like BLSTMs. Be careful because the script itself does not have a
# way to figure out what kind of topology you are using.
#
# Also be aware that this decoding mechanism means that you have effectively
# unlimited context within the utterance. Unless your models were trained (at
# least partly) on quite large chunk-sizes, e.g. 100 or more (although the
# longer the BLSTM recurrence the larger chunk-size you'd need in training),
# there is a possibility that this effectively infinite left-context will cause
# a mismatch with the training condition. Also, for recurrent topologies, you may want to make sure
# that the --extra-left-context-initial matches the --egs.chunk-left-context-initial
# that you trained with, . [note: if not specified during training, it defaults to
# the same as the regular --extra-left-context
# This script does decoding with a neural-net.
# Begin configuration section.
stage=1
nj=4 # number of decoding jobs.
acwt=0.1 # Just a default value, used for adaptation and beam-pruning..
post_decode_acwt=1.0 # can be used in 'chain' systems to scale acoustics by 10 so the
# regular scoring script works.
cmd=run.pl
beam=15.0
frames_per_chunk=50
max_active=7000
min_active=200
ivector_scale=1.0
lattice_beam=8.0 # Beam we use in lattice generation.
iter=final
scoring_opts=
skip_diagnostics=false
skip_scoring=false
extra_left_context_initial=0
online_ivector_dir=
minimize=false
# End configuration section.
echo "$0 $@" # Print the command line for logging
[ -f ./path.sh ] && . ./path.sh; # source the path.
. parse_options.sh || exit 1;
if [ $# -ne 3 ]; then
echo "Usage: $0 [options] <graph-dir> <data-dir> <decode-dir>"
echo "e.g.: steps/nnet3/decode.sh --nj 8 \\"
echo "--online-ivector-dir exp/nnet2_online/ivectors_test_eval92 \\"
echo " exp/tri4b/graph_bg data/test_eval92_hires $dir/decode_bg_eval92"
echo "main options (for others, see top of script file)"
echo " --config <config-file> # config containing options"
echo " --nj <nj> # number of parallel jobs"
echo " --cmd <cmd> # Command to run in parallel with"
echo " --beam <beam> # Decoding beam; default 15.0"
echo " --iter <iter> # Iteration of model to decode; default is final."
echo " --scoring-opts <string> # options to local/score.sh"
exit 1;
fi
graphdir=$1
data=$2
dir=$3
srcdir=`dirname $dir`; # Assume model directory one level up from decoding directory.
model=$srcdir/$iter.mdl
[ ! -z "$online_ivector_dir" ] && \
extra_files="$online_ivector_dir/ivector_online.scp $online_ivector_dir/ivector_period"
for f in $graphdir/HCLG.fst $data/feats.scp $model $extra_files; do
[ ! -f $f ] && echo "$0: no such file $f" && exit 1;
done
sdata=$data/split$nj;
cmvn_opts=`cat $srcdir/cmvn_opts` || exit 1;
mkdir -p $dir/log
[[ -d $sdata && $data/feats.scp -ot $sdata ]] || split_data.sh $data $nj || exit 1;
echo $nj > $dir/num_jobs
## Set up features.
echo "$0: feature type is raw"
splice_opts=`cat $srcdir/splice_opts 2>/dev/null`
feats="ark,s,cs:apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- |"
if [ ! -z "$online_ivector_dir" ]; then
ivector_period=$(cat $online_ivector_dir/ivector_period) || exit 1;
ivector_opts="--online-ivectors=scp:$online_ivector_dir/ivector_online.scp --online-ivector-period=$ivector_period"
fi
if [ "$post_decode_acwt" == 1.0 ]; then
lat_wspecifier="ark:|gzip -c >$dir/lat.JOB.gz"
else
lat_wspecifier="ark:|lattice-scale --acoustic-scale=$post_decode_acwt ark:- ark:- | gzip -c >$dir/lat.JOB.gz"
fi
frame_subsampling_opt=
if [ -f $srcdir/frame_subsampling_factor ]; then
# e.g. for 'chain' systems
frame_subsampling_opt="--frame-subsampling-factor=$(cat $srcdir/frame_subsampling_factor)"
fi
if [ $stage -le 1 ]; then
$cmd JOB=1:$nj $dir/log/decode.JOB.log \
nnet3-latgen-faster-looped $ivector_opts $frame_subsampling_opt \
--frames-per-chunk=$frames_per_chunk \
--extra-left-context-initial=$extra_left_context_initial \
--minimize=$minimize --max-active=$max_active --min-active=$min_active --beam=$beam \
--lattice-beam=$lattice_beam --acoustic-scale=$acwt --allow-partial=true \
--word-symbol-table=$graphdir/words.txt "$model" \
$graphdir/HCLG.fst "$feats" "$lat_wspecifier" || exit 1;
fi
if [ $stage -le 2 ]; then
if ! $skip_diagnostics ; then
[ ! -z $iter ] && iter_opt="--iter $iter"
steps/diagnostic/analyze_lats.sh --cmd "$cmd" $iter_opt $graphdir $dir
fi
fi
# The output of this script is the files "lat.*.gz"-- we'll rescore this at
# different acoustic scales to get the final output.
if [ $stage -le 3 ]; then
if ! $skip_scoring ; then
[ ! -x local/score.sh ] && \
echo "Not scoring because local/score.sh does not exist or not executable." && exit 1;
echo "score best paths"
[ "$iter" != "final" ]
local/score.sh $scoring_opts --cmd "$cmd" $data $graphdir $dir
echo "score confidence and timing with sclite"
fi
fi
echo "Decoding done."
exit 0;