Blame view
egs/wsj/s5/steps/nnet3/lstm/train.sh
37.3 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 |
#!/bin/bash # THIS SCRIPT IS DEPRECATED, see ../train_rnn.py # Copyright 2012-2015 Johns Hopkins University (Author: Daniel Povey). # 2013 Xiaohui Zhang # 2013 Guoguo Chen # 2014 Vimal Manohar # 2014-2015 Vijayaditya Peddinti # Apache 2.0. # Terminology: # sample - one input-output tuple, which is an input sequence and output sequence for LSTM # frame - one output label and the input context used to compute it # Begin configuration section. cmd=run.pl num_epochs=10 # Number of epochs of training; # the number of iterations is worked out from this. initial_effective_lrate=0.0003 final_effective_lrate=0.00003 num_jobs_initial=1 # Number of neural net jobs to run in parallel at the start of training num_jobs_final=8 # Number of neural net jobs to run in parallel at the end of training prior_subset_size=20000 # 20k samples per job, for computing priors. num_jobs_compute_prior=10 # these are single-threaded, run on CPU. get_egs_stage=0 # can be used for rerunning after partial online_ivector_dir= presoftmax_prior_scale_power=-0.25 # we haven't yet used pre-softmax prior scaling in the LSTM model remove_egs=true # set to false to disable removing egs after training is done. max_models_combine=20 # The "max_models_combine" is the maximum number of models we give # to the final 'combine' stage, but these models will themselves be averages of # iteration-number ranges. shuffle_buffer_size=5000 # This "buffer_size" variable controls randomization of the samples # on each iter. You could set it to 0 or to a large value for complete # randomization, but this would both consume memory and cause spikes in # disk I/O. Smaller is easier on disk and memory but less random. It's # not a huge deal though, as samples are anyway randomized right at the start. # (the point of this is to get data in different minibatches on different iterations, # since in the preconditioning method, 2 samples in the same minibatch can # affect each others' gradients. add_layers_period=2 # by default, add new layers every 2 iterations. stage=-6 exit_stage=-100 # you can set this to terminate the training early. Exits before running this stage # count space-separated fields in splice_indexes to get num-hidden-layers. splice_indexes="-2,-1,0,1,2 0 0" # Format : layer<hidden_layer>/<frame_indices>....layer<hidden_layer>/<frame_indices> " # note: hidden layers which are composed of one or more components, # so hidden layer indexing is different from component count # LSTM parameters num_lstm_layers=3 cell_dim=1024 # dimension of the LSTM cell hidden_dim=1024 # the dimension of the fully connected hidden layer outputs recurrent_projection_dim=256 non_recurrent_projection_dim=256 norm_based_clipping=true # if true norm_based_clipping is used. # In norm-based clipping the activation Jacobian matrix # for the recurrent connections in the network is clipped # to ensure that the individual row-norm (l2) does not increase # beyond the clipping_threshold. # If false, element-wise clipping is used. clipping_threshold=30 # if norm_based_clipping is true this would be the maximum value of the row l2-norm, # else this is the max-absolute value of each element in Jacobian. chunk_width=20 # number of output labels in the sequence used to train an LSTM # Caution: if you double this you should halve --samples-per-iter. chunk_left_context=40 # number of steps used in the estimation of LSTM state before prediction of the first label chunk_right_context=0 # number of steps used in the estimation of LSTM state before prediction of the first label (usually used in bi-directional LSTM case) label_delay=5 # the lstm output is used to predict the label with the specified delay lstm_delay=" -1 -2 -3 " # the delay to be used in the recurrence of lstms # "-1 -2 -3" means the a three layer stacked LSTM would use recurrence connections with # delays -1, -2 and -3 at layer1 lstm, layer2 lstm and layer3 lstm respectively # "[-1,1] [-2,2] [-3,3]" means a three layer stacked bi-directional LSTM would use recurrence # connections with delay -1 for the forward, 1 for the backward at layer1, # -2 for the forward, 2 for the backward at layer2, and so on at layer3 num_bptt_steps= # this variable counts the number of time steps to back-propagate from the last label in the chunk # it is usually same as chunk_width # nnet3-train options shrink=0.99 # this parameter would be used to scale the parameter matrices shrink_threshold=0.15 # a value less than 0.25 that we compare the mean of # 'deriv-avg' for sigmoid components with, and if it's # less, we shrink. max_param_change=2.0 # max param change per minibatch num_chunk_per_minibatch=100 # number of sequences to be processed in parallel every mini-batch samples_per_iter=20000 # this is really the number of egs in each archive. Each eg has # 'chunk_width' frames in it-- for chunk_width=20, this value (20k) # is equivalent to the 400k number that we use as a default in # regular DNN training. momentum=0.5 # e.g. 0.5. Note: we implemented it in such a way that # it doesn't increase the effective learning rate. use_gpu=true # if true, we run on GPU. cleanup=true egs_dir= max_lda_jobs=10 # use no more than 10 jobs for the LDA accumulation. lda_opts= egs_opts= transform_dir= # If supplied, this dir used instead of alidir to find transforms. cmvn_opts= # will be passed to get_lda.sh and get_egs.sh, if supplied. # only relevant for "raw" features, not lda. feat_type=raw # or set to 'lda' to use LDA features. align_cmd= # The cmd that is passed to steps/nnet2/align.sh align_use_gpu= # Passed to use_gpu in steps/nnet2/align.sh [yes/no] realign_times= # List of times on which we realign. Each time is # floating point number strictly between 0 and 1, which # will be multiplied by the num-iters to get an iteration # number. num_jobs_align=30 # Number of jobs for realignment rand_prune=4.0 # speeds up LDA. # End configuration section. trap 'for pid in $(jobs -pr); do kill -KILL $pid; done' INT QUIT TERM echo "$0: THIS SCRIPT IS DEPRECATED" echo "$0 $@" # Print the command line for logging if [ -f path.sh ]; then . ./path.sh; fi . parse_options.sh || exit 1; if [ $# != 4 ]; then echo "Usage: $0 [opts] <data> <lang> <ali-dir> <exp-dir>" echo " e.g.: $0 data/train data/lang exp/tri3_ali exp/tri4_nnet" echo "" echo "Main options (for others, see top of script file)" echo " --config <config-file> # config file containing options" echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs." echo " --num-epochs <#epochs|10> # Number of epochs of training" echo " --initial-effective-lrate <lrate|0.0003> # effective learning rate at start of training." echo " --final-effective-lrate <lrate|0.00003> # effective learning rate at end of training." echo " # data, 0.00025 for large data" echo " --momentum <momentum|0.5> # Momentum constant: note, this is " echo " # implemented in such a way that it doesn't" echo " # increase the effective learning rate." echo " --num-jobs-initial <num-jobs|1> # Number of parallel jobs to use for neural net training, at the start." echo " --num-jobs-final <num-jobs|8> # Number of parallel jobs to use for neural net training, at the end" echo " --num-threads <num-threads|16> # Number of parallel threads per job, for CPU-based training (will affect" echo " # results as well as speed; may interact with batch size; if you increase" echo " # this, you may want to decrease the batch size." echo " --parallel-opts <opts|\"--num-threads 16 --mem 1G\"> # extra options to pass to e.g. queue.pl for processes that" echo " # use multiple threads... note, you might have to reduce --mem" echo " # versus your defaults, because it gets multiplied by the --num-threads argument." echo " --splice-indexes <string|\"-2,-1,0,1,2 0 0\"> " echo " # Frame indices used for each splice layer." echo " # Format : <frame_indices> .... <frame_indices> " echo " # the number of fields determines the number of LSTM and non-recurrent layers" echo " # also see the --num-lstm-layers option" echo " # (note: we splice processed, typically 40-dimensional frames" echo " --lda-dim <dim|''> # Dimension to reduce spliced features to with LDA" echo " --realign-epochs <list-of-epochs|''> # A list of space-separated epoch indices the beginning of which" echo " # realignment is to be done" echo " --align-cmd (utils/run.pl|utils/queue.pl <queue opts>) # passed to align.sh" echo " --align-use-gpu (yes/no) # specify is gpu is to be used for realignment" echo " --num-jobs-align <#njobs|30> # Number of jobs to perform realignment" echo " --stage <stage|-4> # Used to run a partially-completed training process from somewhere in" echo " # the middle." echo " ################### LSTM options ###################### " echo " --num-lstm-layers <int|3> # number of LSTM layers" echo " --cell-dim <int|1024> # dimension of the LSTM cell" echo " --hidden-dim <int|1024> # the dimension of the fully connected hidden layer outputs" echo " --recurrent-projection-dim <int|256> # the output dimension of the recurrent-projection-matrix" echo " --non-recurrent-projection-dim <int|256> # the output dimension of the non-recurrent-projection-matrix" echo " --chunk-left-context <int|40> # number of time-steps used in the estimation of the first LSTM state" echo " --chunk-width <int|20> # number of output labels in the sequence used to train an LSTM" echo " # Caution: if you double this you should halve --samples-per-iter." echo " --norm-based-clipping <bool|true> # if true norm_based_clipping is used." echo " # In norm-based clipping the activation Jacobian matrix" echo " # for the recurrent connections in the network is clipped" echo " # to ensure that the individual row-norm (l2) does not increase" echo " # beyond the clipping_threshold." echo " # If false, element-wise clipping is used." echo " --num-bptt-steps <int|> # this variable counts the number of time steps to back-propagate from the last label in the chunk" echo " # it defaults to chunk_width" echo " --label-delay <int|5> # the lstm output is used to predict the label with the specified delay" echo " --lstm-delay <str|\" -1 -2 -3 \"> # the delay to be used in the recurrence of lstms" echo " # \"-1 -2 -3\" means the a three layer stacked LSTM would use recurrence connections with " echo " # delays -1, -2 and -3 at layer1 lstm, layer2 lstm and layer3 lstm respectively" echo " --clipping-threshold <int|30> # if norm_based_clipping is true this would be the maximum value of the row l2-norm," echo " # else this is the max-absolute value of each element in Jacobian." echo " ################### LSTM specific training options ###################### " echo " --num-chunks-per-minibatch <minibatch-size|100> # Number of sequences to be processed in parallel in a minibatch" echo " --samples-per-iter <#samples|20000> # Number of egs in each archive of data. This times --chunk-width is" echo " # the number of frames processed per iteration" echo " --shrink <shrink|0.99> # if non-zero this parameter will be used to scale the parameter matrices" echo " --shrink-threshold <threshold|0.15> # a threshold (should be between 0.0 and 0.25) that controls when to" echo " # do parameter shrinking." echo " for more options see the script" exit 1; fi data=$1 lang=$2 alidir=$3 dir=$4 if [ ! -z "$realign_times" ]; then [ -z "$align_cmd" ] && echo "$0: realign_times specified but align_cmd not specified" && exit 1 [ -z "$align_use_gpu" ] && echo "$0: realign_times specified but align_use_gpu not specified" && exit 1 fi # Check some files. for f in $data/feats.scp $lang/L.fst $alidir/ali.1.gz $alidir/final.mdl $alidir/tree; do [ ! -f $f ] && echo "$0: no such file $f" && exit 1; done # Set some variables. num_leaves=`tree-info $alidir/tree 2>/dev/null | grep num-pdfs | awk '{print $2}'` || exit 1 [ -z $num_leaves ] && echo "\$num_leaves is unset" && exit 1 [ "$num_leaves" -eq "0" ] && echo "\$num_leaves is 0" && exit 1 nj=`cat $alidir/num_jobs` || exit 1; # number of jobs in alignment dir... # in this dir we'll have just one job. sdata=$data/split$nj utils/split_data.sh $data $nj mkdir -p $dir/log echo $nj > $dir/num_jobs cp $alidir/tree $dir utils/lang/check_phones_compatible.sh $lang/phones.txt $alidir/phones.txt || exit 1; cp $lang/phones.txt $dir || exit 1; # First work out the feature and iVector dimension, needed for tdnn config creation. case $feat_type in raw) feat_dim=$(feat-to-dim --print-args=false scp:$data/feats.scp -) || \ { echo "$0: Error getting feature dim"; exit 1; } ;; lda) [ ! -f $alidir/final.mat ] && echo "$0: With --feat-type lda option, expect $alidir/final.mat to exist." # get num-rows in lda matrix, which is the lda feature dim. feat_dim=$(matrix-dim --print-args=false $alidir/final.mat | cut -f 1) ;; *) echo "$0: Bad --feat-type '$feat_type';"; exit 1; esac if [ -z "$online_ivector_dir" ]; then ivector_dim=0 else ivector_dim=$(feat-to-dim scp:$online_ivector_dir/ivector_online.scp -) || exit 1; fi if [ $stage -le -5 ]; then echo "$0: creating neural net configs"; # create the config files for nnet initialization # note an additional space is added to splice_indexes to # avoid issues with the python ArgParser which can have # issues with negative arguments (due to minus sign) config_extra_opts=() [ ! -z "$lstm_delay" ] && config_extra_opts+=(--lstm-delay "$lstm_delay") steps/nnet3/lstm/make_configs.py "${config_extra_opts[@]}" \ --splice-indexes "$splice_indexes " \ --num-lstm-layers $num_lstm_layers \ --feat-dim $feat_dim \ --ivector-dim $ivector_dim \ --cell-dim $cell_dim \ --hidden-dim $hidden_dim \ --recurrent-projection-dim $recurrent_projection_dim \ --non-recurrent-projection-dim $non_recurrent_projection_dim \ --norm-based-clipping $norm_based_clipping \ --clipping-threshold $clipping_threshold \ --num-targets $num_leaves \ --label-delay $label_delay \ $dir/configs || exit 1; # Initialize as "raw" nnet, prior to training the LDA-like preconditioning # matrix. This first config just does any initial splicing that we do; # we do this as it's a convenient way to get the stats for the 'lda-like' # transform. $cmd $dir/log/nnet_init.log \ nnet3-init --srand=-2 $dir/configs/init.config $dir/init.raw || exit 1; fi # sourcing the "vars" below sets # model_left_context=(something) # model_right_context=(something) # num_hidden_layers=(something) . $dir/configs/vars || exit 1; left_context=$((chunk_left_context + model_left_context)) right_context=$((chunk_right_context + model_right_context)) context_opts="--left-context=$left_context --right-context=$right_context" ! [ "$num_hidden_layers" -gt 0 ] && echo \ "$0: Expected num_hidden_layers to be defined" && exit 1; [ -z "$transform_dir" ] && transform_dir=$alidir if [ $stage -le -4 ] && [ -z "$egs_dir" ]; then extra_opts=() [ ! -z "$cmvn_opts" ] && extra_opts+=(--cmvn-opts "$cmvn_opts") [ ! -z "$feat_type" ] && extra_opts+=(--feat-type $feat_type) [ ! -z "$online_ivector_dir" ] && extra_opts+=(--online-ivector-dir $online_ivector_dir) extra_opts+=(--transform-dir $transform_dir) extra_opts+=(--left-context $left_context) extra_opts+=(--right-context $right_context) # Note: in RNNs we process sequences of labels rather than single label per sample echo "$0: calling get_egs.sh" steps/nnet3/get_egs.sh $egs_opts "${extra_opts[@]}" \ --cmd "$cmd" $egs_opts \ --stage $get_egs_stage \ --samples-per-iter $samples_per_iter \ --frames-per-eg $chunk_width \ $data $alidir $dir/egs || exit 1; fi [ -z $egs_dir ] && egs_dir=$dir/egs if [ "$feat_dim" != "$(cat $egs_dir/info/feat_dim)" ]; then echo "$0: feature dimension mismatch with egs, $feat_dim vs $(cat $egs_dir/info/feat_dim)"; exit 1; fi if [ "$ivector_dim" != "$(cat $egs_dir/info/ivector_dim)" ]; then echo "$0: ivector dimension mismatch with egs, $ivector_dim vs $(cat $egs_dir/info/ivector_dim)"; exit 1; fi # copy any of the following that exist, to $dir. cp $egs_dir/{cmvn_opts,splice_opts,final.mat} $dir 2>/dev/null # confirm that the egs_dir has the necessary context (especially important if # the --egs-dir option was used on the command line). egs_left_context=$(cat $egs_dir/info/left_context) || exit -1 egs_right_context=$(cat $egs_dir/info/right_context) || exit -1 ( [ $egs_left_context -lt $left_context ] || \ [ $egs_right_context -lt $right_context ] ) && \ echo "$0: egs in $egs_dir have too little context" && exit -1; chunk_width=$(cat $egs_dir/info/frames_per_eg) || { echo "error: no such file $egs_dir/info/frames_per_eg"; exit 1; } num_archives=$(cat $egs_dir/info/num_archives) || { echo "error: no such file $egs_dir/info/num_archives"; exit 1; } [ $num_jobs_initial -gt $num_jobs_final ] && \ echo "$0: --initial-num-jobs cannot exceed --final-num-jobs" && exit 1; [ $num_jobs_final -gt $num_archives ] && \ echo "$0: --final-num-jobs cannot exceed #archives $num_archives." && exit 1; if [ $stage -le -3 ]; then echo "$0: getting preconditioning matrix for input features." num_lda_jobs=$num_archives [ $num_lda_jobs -gt $max_lda_jobs ] && num_lda_jobs=$max_lda_jobs # Write stats with the same format as stats for LDA. $cmd JOB=1:$num_lda_jobs $dir/log/get_lda_stats.JOB.log \ nnet3-acc-lda-stats --rand-prune=$rand_prune \ $dir/init.raw "ark:$egs_dir/egs.JOB.ark" $dir/JOB.lda_stats || exit 1; all_lda_accs=$(for n in $(seq $num_lda_jobs); do echo $dir/$n.lda_stats; done) $cmd $dir/log/sum_transform_stats.log \ sum-lda-accs $dir/lda_stats $all_lda_accs || exit 1; rm $all_lda_accs || exit 1; # this computes a fixed affine transform computed in the way we described in # Appendix C.6 of http://arxiv.org/pdf/1410.7455v6.pdf; it's a scaled variant # of an LDA transform but without dimensionality reduction. $cmd $dir/log/get_transform.log \ nnet-get-feature-transform $lda_opts $dir/lda.mat $dir/lda_stats || exit 1; ln -sf ../lda.mat $dir/configs/lda.mat fi if [ $stage -le -2 ]; then echo "$0: preparing initial vector for FixedScaleComponent before softmax" echo " ... using priors^$presoftmax_prior_scale_power and rescaling to average 1" # obtains raw pdf count $cmd JOB=1:$nj $dir/log/acc_pdf.JOB.log \ ali-to-post "ark:gunzip -c $alidir/ali.JOB.gz|" ark:- \| \ post-to-tacc --per-pdf=true $alidir/final.mdl ark:- $dir/pdf_counts.JOB || exit 1; $cmd $dir/log/sum_pdf_counts.log \ vector-sum --binary=false $dir/pdf_counts.* $dir/pdf_counts || exit 1; rm $dir/pdf_counts.* awk -v power=$presoftmax_prior_scale_power -v smooth=0.01 \ '{ for(i=2; i<=NF-1; i++) { count[i-2] = $i; total += $i; } num_pdfs=NF-2; average_count = total/num_pdfs; for (i=0; i<num_pdfs; i++) stot += (scale[i] = (count[i] + smooth * average_count)^power) printf " [ "; for (i=0; i<num_pdfs; i++) printf("%f ", scale[i]*num_pdfs/stot); print "]" }' \ $dir/pdf_counts > $dir/presoftmax_prior_scale.vec ln -sf ../presoftmax_prior_scale.vec $dir/configs/presoftmax_prior_scale.vec fi if [ $stage -le -1 ]; then # Add the first layer; this will add in the lda.mat and # presoftmax_prior_scale.vec. $cmd $dir/log/add_first_layer.log \ nnet3-init --srand=-3 $dir/init.raw $dir/configs/layer1.config $dir/0.raw || exit 1; # Convert to .mdl, train the transitions, set the priors. $cmd $dir/log/init_mdl.log \ nnet3-am-init $alidir/final.mdl $dir/0.raw - \| \ nnet3-am-train-transitions - "ark:gunzip -c $alidir/ali.*.gz|" $dir/0.mdl || exit 1; fi # set num_iters so that as close as possible, we process the data $num_epochs # times, i.e. $num_iters*$avg_num_jobs) == $num_epochs*$num_archives, # where avg_num_jobs=(num_jobs_initial+num_jobs_final)/2. num_archives_to_process=$[$num_epochs*$num_archives] num_archives_processed=0 num_iters=$[($num_archives_to_process*2)/($num_jobs_initial+$num_jobs_final)] ! [ $num_iters -gt $[$finish_add_layers_iter+2] ] \ && echo "$0: Insufficient epochs" && exit 1 finish_add_layers_iter=$[$num_hidden_layers * $add_layers_period] echo "$0: Will train for $num_epochs epochs = $num_iters iterations" if $use_gpu; then parallel_suffix="" train_queue_opt="--gpu 1" combine_queue_opt="--gpu 1" prior_gpu_opt="--use-gpu=yes" prior_queue_opt="--gpu 1" parallel_train_opts= if ! cuda-compiled; then echo "$0: WARNING: you are running with one thread but you have not compiled" echo " for CUDA. You may be running a setup optimized for GPUs. If you have" echo " GPUs and have nvcc installed, go to src/ and do ./configure; make" exit 1 fi else echo "$0: without using a GPU this will be very slow. nnet3 does not yet support multiple threads." parallel_train_opts="--use-gpu=no" combine_queue_opt="" # the combine stage will be quite slow if not using # GPU, as we didn't enable that program to use # multiple threads. prior_gpu_opt="--use-gpu=no" prior_queue_opt="" fi approx_iters_per_epoch_final=$[$num_archives/$num_jobs_final] # First work out how many iterations we want to combine over in the final # nnet3-combine-fast invocation. (We may end up subsampling from these if the # number exceeds max_model_combine). The number we use is: # min(max(max_models_combine, approx_iters_per_epoch_final), # 1/2 * iters_after_last_layer_added) num_iters_combine=$max_models_combine if [ $num_iters_combine -lt $approx_iters_per_epoch_final ]; then num_iters_combine=$approx_iters_per_epoch_final fi half_iters_after_add_layers=$[($num_iters-$finish_add_layers_iter)/2] if [ $num_iters_combine -gt $half_iters_after_add_layers ]; then num_iters_combine=$half_iters_after_add_layers fi first_model_combine=$[$num_iters-$num_iters_combine+1] x=0 for realign_time in $realign_times; do # Work out the iterations on which we will re-align, if the --realign-times # option was used. This is slightly approximate. ! perl -e "exit($realign_time > 0.0 && $realign_time < 1.0 ? 0:1);" && \ echo "Invalid --realign-times option $realign_times: elements must be strictly between 0 and 1."; # the next formula is based on the one for mix_up_iter above. realign_iter=$(perl -e '($j,$k,$n,$p)=@ARGV; print int(0.5 + ($j==$k ? $n*$p : $n*(sqrt((1-$p)*$j*$j+$p*$k*$k)-$j)/($k-$j))); ' $num_jobs_initial $num_jobs_final $num_iters $realign_time) || exit 1; realign_this_iter[$realign_iter]=$realign_time done cur_egs_dir=$egs_dir [ -z $num_bptt_steps ] && num_bptt_steps=$chunk_width; min_deriv_time=$((chunk_width - num_bptt_steps)) while [ $x -lt $num_iters ]; do [ $x -eq $exit_stage ] && echo "$0: Exiting early due to --exit-stage $exit_stage" && exit 0; this_num_jobs=$(perl -e "print int(0.5+$num_jobs_initial+($num_jobs_final-$num_jobs_initial)*$x/$num_iters);") ilr=$initial_effective_lrate; flr=$final_effective_lrate; np=$num_archives_processed; nt=$num_archives_to_process; this_effective_learning_rate=$(perl -e "print ($x + 1 >= $num_iters ? $flr : $ilr*exp($np*log($flr/$ilr)/$nt));"); this_learning_rate=$(perl -e "print ($this_effective_learning_rate*$this_num_jobs);"); if [ ! -z "${realign_this_iter[$x]}" ]; then prev_egs_dir=$cur_egs_dir cur_egs_dir=$dir/egs_${realign_this_iter[$x]} fi if [ $x -ge 0 ] && [ $stage -le $x ]; then # Set this_shrink value. if [ $x -eq 0 ] || nnet3-am-info --print-args=false $dir/$x.mdl | \ perl -e "while(<>){ if (m/type=Sigmoid.+deriv-avg=.+mean=(\S+)/) { \$n++; \$tot+=\$1; } } exit(\$tot/\$n > $shrink_threshold);"; then this_shrink=$shrink; # e.g. avg-deriv of sigmoids was <= 0.125, so shrink. else this_shrink=1.0 # don't shrink: sigmoids are not over-saturated. fi echo "On iteration $x, learning rate is $this_learning_rate and shrink value is $this_shrink." if [ ! -z "${realign_this_iter[$x]}" ]; then time=${realign_this_iter[$x]} echo "Getting average posterior for purposes of adjusting the priors." # Note: this just uses CPUs, using a smallish subset of data. # always use the first egs archive, which makes the script simpler; # we're using different random subsets of it. rm $dir/post.$x.*.vec 2>/dev/null $cmd JOB=1:$num_jobs_compute_prior $dir/log/get_post.$x.JOB.log \ nnet3-copy-egs --srand=JOB --frame=random $context_opts ark:$prev_egs_dir/egs.1.ark ark:- \| \ nnet3-subset-egs --srand=JOB --n=$prior_subset_size ark:- ark:- \| \ nnet3-merge-egs ark:- ark:- \| \ nnet3-compute-from-egs --apply-exp=true "nnet3-am-copy --raw=true $dir/$x.mdl -|" ark:- ark:- \| \ matrix-sum-rows ark:- ark:- \| vector-sum ark:- $dir/post.$x.JOB.vec || exit 1; sleep 3; # make sure there is time for $dir/post.$x.*.vec to appear. $cmd $dir/log/vector_sum.$x.log \ vector-sum $dir/post.$x.*.vec $dir/post.$x.vec || exit 1; rm $dir/post.$x.*.vec; echo "Re-adjusting priors based on computed posteriors" $cmd $dir/log/adjust_priors.$x.log \ nnet3-am-adjust-priors $dir/$x.mdl $dir/post.$x.vec $dir/$x.mdl || exit 1; sleep 2 steps/nnet3/align.sh --nj $num_jobs_align --cmd "$align_cmd" --use-gpu $align_use_gpu \ --transform-dir "$transform_dir" --online-ivector-dir "$online_ivector_dir" \ --iter $x $data $lang $dir $dir/ali_$time || exit 1 steps/nnet3/relabel_egs.sh --cmd "$cmd" --iter $x $dir/ali_$time \ $prev_egs_dir $cur_egs_dir || exit 1 if $cleanup && [[ $prev_egs_dir =~ $dir/egs* ]]; then steps/nnet3/remove_egs.sh $prev_egs_dir fi fi # Set off jobs doing some diagnostics, in the background. # Use the egs dir from the previous iteration for the diagnostics $cmd $dir/log/compute_prob_valid.$x.log \ nnet3-compute-prob "nnet3-am-copy --raw=true $dir/$x.mdl - |" \ "ark,bg:nnet3-merge-egs ark:$cur_egs_dir/valid_diagnostic.egs ark:- |" & $cmd $dir/log/compute_prob_train.$x.log \ nnet3-compute-prob "nnet3-am-copy --raw=true $dir/$x.mdl - |" \ "ark,bg:nnet3-merge-egs ark:$cur_egs_dir/train_diagnostic.egs ark:- |" & if [ $x -gt 0 ]; then $cmd $dir/log/progress.$x.log \ nnet3-info "nnet3-am-copy --raw=true $dir/$x.mdl - |" '&&' \ nnet3-show-progress --use-gpu=no "nnet3-am-copy --raw=true $dir/$[$x-1].mdl - |" "nnet3-am-copy --raw=true $dir/$x.mdl - |" \ "ark,bg:nnet3-merge-egs --minibatch-size=256 ark:$cur_egs_dir/train_diagnostic.egs ark:-|" & fi echo "Training neural net (pass $x)" if [ $x -gt 0 ] && \ [ $x -le $[($num_hidden_layers-1)*$add_layers_period] ] && \ [ $[$x%$add_layers_period] -eq 0 ]; then do_average=false # if we've just mixed up, don't do averaging but take the # best. cur_num_hidden_layers=$[1+$x/$add_layers_period] config=$dir/configs/layer$cur_num_hidden_layers.config raw="nnet3-am-copy --raw=true --learning-rate=$this_learning_rate $dir/$x.mdl - | nnet3-init --srand=$x - $config - |" cache_read_opt="" # an option for writing cache (storing pairs of nnet-computations # and computation-requests) during training. else do_average=true if [ $x -eq 0 ]; then do_average=false; fi # on iteration 0, pick the best, don't average. raw="nnet3-am-copy --raw=true --learning-rate=$this_learning_rate $dir/$x.mdl -|" cache_read_opt="--read-cache=$dir/cache.$x" fi if $do_average; then this_num_chunk_per_minibatch=$num_chunk_per_minibatch else # on iteration zero or when we just added a layer, use a smaller minibatch # size (and we will later choose the output of just one of the jobs): the # model-averaging isn't always helpful when the model is changing too fast # (i.e. it can worsen the objective function), and the smaller minibatch # size will help to keep the update stable. this_num_chunk_per_minibatch=$[$num_chunk_per_minibatch/2]; fi rm $dir/.error 2>/dev/null ( # this sub-shell is so that when we "wait" below, # we only wait for the training jobs that we just spawned, # not the diagnostic jobs that we spawned above. # We cannot easily use a single parallel SGE job to do the main training, # because the computation of which archive and which --frame option # to use for each job is a little complex, so we spawn each one separately. # this is no longer true for RNNs as we use do not use the --frame option # but we use the same script for consistency with FF-DNN code for n in $(seq $this_num_jobs); do k=$[$num_archives_processed + $n - 1]; # k is a zero-based index that we will derive # the other indexes from. archive=$[($k%$num_archives)+1]; # work out the 1-based archive index. if [ $n -eq 1 ]; then # an option for writing cache (storing pairs of nnet-computations and # computation-requests) during training. cache_write_opt=" --write-cache=$dir/cache.$[$x+1]" else cache_write_opt="" fi $cmd $train_queue_opt $dir/log/train.$x.$n.log \ nnet3-train $parallel_train_opts $cache_read_opt $cache_write_opt --print-interval=10 --momentum=$momentum \ --max-param-change=$max_param_change \ --optimization.min-deriv-time=$min_deriv_time "$raw" \ "ark,bg:nnet3-copy-egs $context_opts ark:$cur_egs_dir/egs.$archive.ark ark:- | nnet3-shuffle-egs --buffer-size=$shuffle_buffer_size --srand=$x ark:- ark:-| nnet3-merge-egs --minibatch-size=$this_num_chunk_per_minibatch --measure-output-frames=false --discard-partial-minibatches=true ark:- ark:- |" \ $dir/$[$x+1].$n.raw || touch $dir/.error & done wait ) # the error message below is not that informative, but $cmd will # have printed a more specific one. [ -f $dir/.error ] && echo "$0: error on iteration $x of training" && exit 1; models_to_average=$(steps/nnet3/get_successful_models.py $this_num_jobs $dir/log/train.$x.%.log) nnets_list= for n in $models_to_average; do nnets_list="$nnets_list $dir/$[$x+1].$n.raw" done if $do_average; then # average the output of the different jobs. $cmd $dir/log/average.$x.log \ nnet3-average $nnets_list - \| \ nnet3-am-copy --scale=$this_shrink --set-raw-nnet=- $dir/$x.mdl $dir/$[$x+1].mdl || exit 1; else # choose the best from the different jobs. n=$(perl -e '($nj,$pat)=@ARGV; $best_n=1; $best_logprob=-1.0e+10; for ($n=1;$n<=$nj;$n++) { $fn = sprintf($pat,$n); open(F, "<$fn") || die "Error opening log file $fn"; undef $logprob; while (<F>) { if (m/log-prob-per-frame=(\S+)/) { $logprob=$1; } } close(F); if (defined $logprob && $logprob > $best_logprob) { $best_logprob=$logprob; $best_n=$n; } } print "$best_n "; ' $this_num_jobs $dir/log/train.$x.%d.log) || exit 1; [ -z "$n" ] && echo "Error getting best model" && exit 1; $cmd $dir/log/select.$x.log \ nnet3-am-copy --scale=$this_shrink --set-raw-nnet=$dir/$[$x+1].$n.raw $dir/$x.mdl $dir/$[$x+1].mdl || exit 1; fi nnets_list= for n in `seq 1 $this_num_jobs`; do nnets_list="$nnets_list $dir/$[$x+1].$n.raw" done rm $nnets_list [ ! -f $dir/$[$x+1].mdl ] && exit 1; if [ -f $dir/$[$x-1].mdl ] && $cleanup && \ [ $[($x-1)%100] -ne 0 ] && [ $[$x-1] -lt $first_model_combine ]; then rm $dir/$[$x-1].mdl fi fi rm $dir/cache.$x 2>/dev/null x=$[$x+1] num_archives_processed=$[$num_archives_processed+$this_num_jobs] done if [ $stage -le $num_iters ]; then echo "Doing final combination to produce final.mdl" # Now do combination. In the nnet3 setup, the logic # for doing averaging of subsets of the models in the case where # there are too many models to reliably esetimate interpolation # factors (max_models_combine) is moved into the nnet3-combine nnets_list=() for n in $(seq 0 $[num_iters_combine-1]); do iter=$[$first_model_combine+$n] mdl=$dir/$iter.mdl [ ! -f $mdl ] && echo "Expected $mdl to exist" && exit 1; nnets_list[$n]="nnet3-am-copy --raw=true $mdl -|"; done combine_num_chunk_per_minibatch=$(python -c "print int(1024.0/($chunk_width))") $cmd $combine_queue_opt $dir/log/combine.log \ nnet3-combine --num-iters=40 \ --enforce-sum-to-one=true --enforce-positive-weights=true \ --verbose=3 "${nnets_list[@]}" "ark,bg:nnet3-merge-egs --measure-output-frames=false --minibatch-size=$combine_num_chunk_per_minibatch ark:$cur_egs_dir/combine.egs ark:-|" \ "|nnet3-am-copy --set-raw-nnet=- $dir/$num_iters.mdl $dir/combined.mdl" || exit 1; # Compute the probability of the final, combined model with # the same subset we used for the previous compute_probs, as the # different subsets will lead to different probs. $cmd $dir/log/compute_prob_valid.final.log \ nnet3-compute-prob "nnet3-am-copy --raw=true $dir/combined.mdl -|" \ "ark,bg:nnet3-merge-egs --minibatch-size=256 ark:$cur_egs_dir/valid_diagnostic.egs ark:- |" & $cmd $dir/log/compute_prob_train.final.log \ nnet3-compute-prob "nnet3-am-copy --raw=true $dir/combined.mdl -|" \ "ark,bg:nnet3-merge-egs --minibatch-size=256 ark:$cur_egs_dir/train_diagnostic.egs ark:- |" & fi if [ $stage -le $[$num_iters+1] ]; then echo "Getting average posterior for purposes of adjusting the priors." # Note: this just uses CPUs, using a smallish subset of data. rm $dir/post.$x.*.vec 2>/dev/null if [ $num_jobs_compute_prior -gt $num_archives ]; then egs_part=1; else egs_part=JOB; fi $cmd JOB=1:$num_jobs_compute_prior $prior_queue_opt $dir/log/get_post.$x.JOB.log \ nnet3-subset-egs --srand=JOB --n=$prior_subset_size ark:$cur_egs_dir/egs.$egs_part.ark ark:- \| \ nnet3-merge-egs --measure-output-frames=true --minibatch-size=128 ark:- ark:- \| \ nnet3-compute-from-egs $prior_gpu_opt --apply-exp=true \ "nnet3-am-copy --raw=true $dir/combined.mdl -|" ark:- ark:- \| \ matrix-sum-rows ark:- ark:- \| vector-sum ark:- $dir/post.$x.JOB.vec || exit 1; sleep 3; # make sure there is time for $dir/post.$x.*.vec to appear. $cmd $dir/log/vector_sum.$x.log \ vector-sum $dir/post.$x.*.vec $dir/post.$x.vec || exit 1; rm $dir/post.$x.*.vec; echo "Re-adjusting priors based on computed posteriors" $cmd $dir/log/adjust_priors.final.log \ nnet3-am-adjust-priors $dir/combined.mdl $dir/post.$x.vec $dir/final.mdl || exit 1; fi if [ ! -f $dir/final.mdl ]; then echo "$0: $dir/final.mdl does not exist." # we don't want to clean up if the training didn't succeed. exit 1; fi sleep 2 echo Done if $cleanup; then echo Cleaning up data if $remove_egs && [[ $cur_egs_dir =~ $dir/egs* ]]; then steps/nnet2/remove_egs.sh $cur_egs_dir fi echo Removing most of the models for x in `seq 0 $num_iters`; do if [ $[$x%100] -ne 0 ] && [ $x -ne $num_iters ] && [ -f $dir/$x.mdl ]; then # delete all but every 100th model; don't delete the ones which combine to form the final model. rm $dir/$x.mdl fi done fi |