train.sh
37.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
#!/bin/bash
# THIS SCRIPT IS DEPRECATED, see ../train_rnn.py
# Copyright 2012-2015 Johns Hopkins University (Author: Daniel Povey).
# 2013 Xiaohui Zhang
# 2013 Guoguo Chen
# 2014 Vimal Manohar
# 2014-2015 Vijayaditya Peddinti
# Apache 2.0.
# Terminology:
# sample - one input-output tuple, which is an input sequence and output sequence for LSTM
# frame - one output label and the input context used to compute it
# Begin configuration section.
cmd=run.pl
num_epochs=10 # Number of epochs of training;
# the number of iterations is worked out from this.
initial_effective_lrate=0.0003
final_effective_lrate=0.00003
num_jobs_initial=1 # Number of neural net jobs to run in parallel at the start of training
num_jobs_final=8 # Number of neural net jobs to run in parallel at the end of training
prior_subset_size=20000 # 20k samples per job, for computing priors.
num_jobs_compute_prior=10 # these are single-threaded, run on CPU.
get_egs_stage=0 # can be used for rerunning after partial
online_ivector_dir=
presoftmax_prior_scale_power=-0.25 # we haven't yet used pre-softmax prior scaling in the LSTM model
remove_egs=true # set to false to disable removing egs after training is done.
max_models_combine=20 # The "max_models_combine" is the maximum number of models we give
# to the final 'combine' stage, but these models will themselves be averages of
# iteration-number ranges.
shuffle_buffer_size=5000 # This "buffer_size" variable controls randomization of the samples
# on each iter. You could set it to 0 or to a large value for complete
# randomization, but this would both consume memory and cause spikes in
# disk I/O. Smaller is easier on disk and memory but less random. It's
# not a huge deal though, as samples are anyway randomized right at the start.
# (the point of this is to get data in different minibatches on different iterations,
# since in the preconditioning method, 2 samples in the same minibatch can
# affect each others' gradients.
add_layers_period=2 # by default, add new layers every 2 iterations.
stage=-6
exit_stage=-100 # you can set this to terminate the training early. Exits before running this stage
# count space-separated fields in splice_indexes to get num-hidden-layers.
splice_indexes="-2,-1,0,1,2 0 0"
# Format : layer<hidden_layer>/<frame_indices>....layer<hidden_layer>/<frame_indices> "
# note: hidden layers which are composed of one or more components,
# so hidden layer indexing is different from component count
# LSTM parameters
num_lstm_layers=3
cell_dim=1024 # dimension of the LSTM cell
hidden_dim=1024 # the dimension of the fully connected hidden layer outputs
recurrent_projection_dim=256
non_recurrent_projection_dim=256
norm_based_clipping=true # if true norm_based_clipping is used.
# In norm-based clipping the activation Jacobian matrix
# for the recurrent connections in the network is clipped
# to ensure that the individual row-norm (l2) does not increase
# beyond the clipping_threshold.
# If false, element-wise clipping is used.
clipping_threshold=30 # if norm_based_clipping is true this would be the maximum value of the row l2-norm,
# else this is the max-absolute value of each element in Jacobian.
chunk_width=20 # number of output labels in the sequence used to train an LSTM
# Caution: if you double this you should halve --samples-per-iter.
chunk_left_context=40 # number of steps used in the estimation of LSTM state before prediction of the first label
chunk_right_context=0 # number of steps used in the estimation of LSTM state before prediction of the first label (usually used in bi-directional LSTM case)
label_delay=5 # the lstm output is used to predict the label with the specified delay
lstm_delay=" -1 -2 -3 " # the delay to be used in the recurrence of lstms
# "-1 -2 -3" means the a three layer stacked LSTM would use recurrence connections with
# delays -1, -2 and -3 at layer1 lstm, layer2 lstm and layer3 lstm respectively
# "[-1,1] [-2,2] [-3,3]" means a three layer stacked bi-directional LSTM would use recurrence
# connections with delay -1 for the forward, 1 for the backward at layer1,
# -2 for the forward, 2 for the backward at layer2, and so on at layer3
num_bptt_steps= # this variable counts the number of time steps to back-propagate from the last label in the chunk
# it is usually same as chunk_width
# nnet3-train options
shrink=0.99 # this parameter would be used to scale the parameter matrices
shrink_threshold=0.15 # a value less than 0.25 that we compare the mean of
# 'deriv-avg' for sigmoid components with, and if it's
# less, we shrink.
max_param_change=2.0 # max param change per minibatch
num_chunk_per_minibatch=100 # number of sequences to be processed in parallel every mini-batch
samples_per_iter=20000 # this is really the number of egs in each archive. Each eg has
# 'chunk_width' frames in it-- for chunk_width=20, this value (20k)
# is equivalent to the 400k number that we use as a default in
# regular DNN training.
momentum=0.5 # e.g. 0.5. Note: we implemented it in such a way that
# it doesn't increase the effective learning rate.
use_gpu=true # if true, we run on GPU.
cleanup=true
egs_dir=
max_lda_jobs=10 # use no more than 10 jobs for the LDA accumulation.
lda_opts=
egs_opts=
transform_dir= # If supplied, this dir used instead of alidir to find transforms.
cmvn_opts= # will be passed to get_lda.sh and get_egs.sh, if supplied.
# only relevant for "raw" features, not lda.
feat_type=raw # or set to 'lda' to use LDA features.
align_cmd= # The cmd that is passed to steps/nnet2/align.sh
align_use_gpu= # Passed to use_gpu in steps/nnet2/align.sh [yes/no]
realign_times= # List of times on which we realign. Each time is
# floating point number strictly between 0 and 1, which
# will be multiplied by the num-iters to get an iteration
# number.
num_jobs_align=30 # Number of jobs for realignment
rand_prune=4.0 # speeds up LDA.
# End configuration section.
trap 'for pid in $(jobs -pr); do kill -KILL $pid; done' INT QUIT TERM
echo "$0: THIS SCRIPT IS DEPRECATED"
echo "$0 $@" # Print the command line for logging
if [ -f path.sh ]; then . ./path.sh; fi
. parse_options.sh || exit 1;
if [ $# != 4 ]; then
echo "Usage: $0 [opts] <data> <lang> <ali-dir> <exp-dir>"
echo " e.g.: $0 data/train data/lang exp/tri3_ali exp/tri4_nnet"
echo ""
echo "Main options (for others, see top of script file)"
echo " --config <config-file> # config file containing options"
echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs."
echo " --num-epochs <#epochs|10> # Number of epochs of training"
echo " --initial-effective-lrate <lrate|0.0003> # effective learning rate at start of training."
echo " --final-effective-lrate <lrate|0.00003> # effective learning rate at end of training."
echo " # data, 0.00025 for large data"
echo " --momentum <momentum|0.5> # Momentum constant: note, this is "
echo " # implemented in such a way that it doesn't"
echo " # increase the effective learning rate."
echo " --num-jobs-initial <num-jobs|1> # Number of parallel jobs to use for neural net training, at the start."
echo " --num-jobs-final <num-jobs|8> # Number of parallel jobs to use for neural net training, at the end"
echo " --num-threads <num-threads|16> # Number of parallel threads per job, for CPU-based training (will affect"
echo " # results as well as speed; may interact with batch size; if you increase"
echo " # this, you may want to decrease the batch size."
echo " --parallel-opts <opts|\"--num-threads 16 --mem 1G\"> # extra options to pass to e.g. queue.pl for processes that"
echo " # use multiple threads... note, you might have to reduce --mem"
echo " # versus your defaults, because it gets multiplied by the --num-threads argument."
echo " --splice-indexes <string|\"-2,-1,0,1,2 0 0\"> "
echo " # Frame indices used for each splice layer."
echo " # Format : <frame_indices> .... <frame_indices> "
echo " # the number of fields determines the number of LSTM and non-recurrent layers"
echo " # also see the --num-lstm-layers option"
echo " # (note: we splice processed, typically 40-dimensional frames"
echo " --lda-dim <dim|''> # Dimension to reduce spliced features to with LDA"
echo " --realign-epochs <list-of-epochs|''> # A list of space-separated epoch indices the beginning of which"
echo " # realignment is to be done"
echo " --align-cmd (utils/run.pl|utils/queue.pl <queue opts>) # passed to align.sh"
echo " --align-use-gpu (yes/no) # specify is gpu is to be used for realignment"
echo " --num-jobs-align <#njobs|30> # Number of jobs to perform realignment"
echo " --stage <stage|-4> # Used to run a partially-completed training process from somewhere in"
echo " # the middle."
echo " ################### LSTM options ###################### "
echo " --num-lstm-layers <int|3> # number of LSTM layers"
echo " --cell-dim <int|1024> # dimension of the LSTM cell"
echo " --hidden-dim <int|1024> # the dimension of the fully connected hidden layer outputs"
echo " --recurrent-projection-dim <int|256> # the output dimension of the recurrent-projection-matrix"
echo " --non-recurrent-projection-dim <int|256> # the output dimension of the non-recurrent-projection-matrix"
echo " --chunk-left-context <int|40> # number of time-steps used in the estimation of the first LSTM state"
echo " --chunk-width <int|20> # number of output labels in the sequence used to train an LSTM"
echo " # Caution: if you double this you should halve --samples-per-iter."
echo " --norm-based-clipping <bool|true> # if true norm_based_clipping is used."
echo " # In norm-based clipping the activation Jacobian matrix"
echo " # for the recurrent connections in the network is clipped"
echo " # to ensure that the individual row-norm (l2) does not increase"
echo " # beyond the clipping_threshold."
echo " # If false, element-wise clipping is used."
echo " --num-bptt-steps <int|> # this variable counts the number of time steps to back-propagate from the last label in the chunk"
echo " # it defaults to chunk_width"
echo " --label-delay <int|5> # the lstm output is used to predict the label with the specified delay"
echo " --lstm-delay <str|\" -1 -2 -3 \"> # the delay to be used in the recurrence of lstms"
echo " # \"-1 -2 -3\" means the a three layer stacked LSTM would use recurrence connections with "
echo " # delays -1, -2 and -3 at layer1 lstm, layer2 lstm and layer3 lstm respectively"
echo " --clipping-threshold <int|30> # if norm_based_clipping is true this would be the maximum value of the row l2-norm,"
echo " # else this is the max-absolute value of each element in Jacobian."
echo " ################### LSTM specific training options ###################### "
echo " --num-chunks-per-minibatch <minibatch-size|100> # Number of sequences to be processed in parallel in a minibatch"
echo " --samples-per-iter <#samples|20000> # Number of egs in each archive of data. This times --chunk-width is"
echo " # the number of frames processed per iteration"
echo " --shrink <shrink|0.99> # if non-zero this parameter will be used to scale the parameter matrices"
echo " --shrink-threshold <threshold|0.15> # a threshold (should be between 0.0 and 0.25) that controls when to"
echo " # do parameter shrinking."
echo " for more options see the script"
exit 1;
fi
data=$1
lang=$2
alidir=$3
dir=$4
if [ ! -z "$realign_times" ]; then
[ -z "$align_cmd" ] && echo "$0: realign_times specified but align_cmd not specified" && exit 1
[ -z "$align_use_gpu" ] && echo "$0: realign_times specified but align_use_gpu not specified" && exit 1
fi
# Check some files.
for f in $data/feats.scp $lang/L.fst $alidir/ali.1.gz $alidir/final.mdl $alidir/tree; do
[ ! -f $f ] && echo "$0: no such file $f" && exit 1;
done
# Set some variables.
num_leaves=`tree-info $alidir/tree 2>/dev/null | grep num-pdfs | awk '{print $2}'` || exit 1
[ -z $num_leaves ] && echo "\$num_leaves is unset" && exit 1
[ "$num_leaves" -eq "0" ] && echo "\$num_leaves is 0" && exit 1
nj=`cat $alidir/num_jobs` || exit 1; # number of jobs in alignment dir...
# in this dir we'll have just one job.
sdata=$data/split$nj
utils/split_data.sh $data $nj
mkdir -p $dir/log
echo $nj > $dir/num_jobs
cp $alidir/tree $dir
utils/lang/check_phones_compatible.sh $lang/phones.txt $alidir/phones.txt || exit 1;
cp $lang/phones.txt $dir || exit 1;
# First work out the feature and iVector dimension, needed for tdnn config creation.
case $feat_type in
raw) feat_dim=$(feat-to-dim --print-args=false scp:$data/feats.scp -) || \
{ echo "$0: Error getting feature dim"; exit 1; }
;;
lda) [ ! -f $alidir/final.mat ] && echo "$0: With --feat-type lda option, expect $alidir/final.mat to exist."
# get num-rows in lda matrix, which is the lda feature dim.
feat_dim=$(matrix-dim --print-args=false $alidir/final.mat | cut -f 1)
;;
*)
echo "$0: Bad --feat-type '$feat_type';"; exit 1;
esac
if [ -z "$online_ivector_dir" ]; then
ivector_dim=0
else
ivector_dim=$(feat-to-dim scp:$online_ivector_dir/ivector_online.scp -) || exit 1;
fi
if [ $stage -le -5 ]; then
echo "$0: creating neural net configs";
# create the config files for nnet initialization
# note an additional space is added to splice_indexes to
# avoid issues with the python ArgParser which can have
# issues with negative arguments (due to minus sign)
config_extra_opts=()
[ ! -z "$lstm_delay" ] && config_extra_opts+=(--lstm-delay "$lstm_delay")
steps/nnet3/lstm/make_configs.py "${config_extra_opts[@]}" \
--splice-indexes "$splice_indexes " \
--num-lstm-layers $num_lstm_layers \
--feat-dim $feat_dim \
--ivector-dim $ivector_dim \
--cell-dim $cell_dim \
--hidden-dim $hidden_dim \
--recurrent-projection-dim $recurrent_projection_dim \
--non-recurrent-projection-dim $non_recurrent_projection_dim \
--norm-based-clipping $norm_based_clipping \
--clipping-threshold $clipping_threshold \
--num-targets $num_leaves \
--label-delay $label_delay \
$dir/configs || exit 1;
# Initialize as "raw" nnet, prior to training the LDA-like preconditioning
# matrix. This first config just does any initial splicing that we do;
# we do this as it's a convenient way to get the stats for the 'lda-like'
# transform.
$cmd $dir/log/nnet_init.log \
nnet3-init --srand=-2 $dir/configs/init.config $dir/init.raw || exit 1;
fi
# sourcing the "vars" below sets
# model_left_context=(something)
# model_right_context=(something)
# num_hidden_layers=(something)
. $dir/configs/vars || exit 1;
left_context=$((chunk_left_context + model_left_context))
right_context=$((chunk_right_context + model_right_context))
context_opts="--left-context=$left_context --right-context=$right_context"
! [ "$num_hidden_layers" -gt 0 ] && echo \
"$0: Expected num_hidden_layers to be defined" && exit 1;
[ -z "$transform_dir" ] && transform_dir=$alidir
if [ $stage -le -4 ] && [ -z "$egs_dir" ]; then
extra_opts=()
[ ! -z "$cmvn_opts" ] && extra_opts+=(--cmvn-opts "$cmvn_opts")
[ ! -z "$feat_type" ] && extra_opts+=(--feat-type $feat_type)
[ ! -z "$online_ivector_dir" ] && extra_opts+=(--online-ivector-dir $online_ivector_dir)
extra_opts+=(--transform-dir $transform_dir)
extra_opts+=(--left-context $left_context)
extra_opts+=(--right-context $right_context)
# Note: in RNNs we process sequences of labels rather than single label per sample
echo "$0: calling get_egs.sh"
steps/nnet3/get_egs.sh $egs_opts "${extra_opts[@]}" \
--cmd "$cmd" $egs_opts \
--stage $get_egs_stage \
--samples-per-iter $samples_per_iter \
--frames-per-eg $chunk_width \
$data $alidir $dir/egs || exit 1;
fi
[ -z $egs_dir ] && egs_dir=$dir/egs
if [ "$feat_dim" != "$(cat $egs_dir/info/feat_dim)" ]; then
echo "$0: feature dimension mismatch with egs, $feat_dim vs $(cat $egs_dir/info/feat_dim)";
exit 1;
fi
if [ "$ivector_dim" != "$(cat $egs_dir/info/ivector_dim)" ]; then
echo "$0: ivector dimension mismatch with egs, $ivector_dim vs $(cat $egs_dir/info/ivector_dim)";
exit 1;
fi
# copy any of the following that exist, to $dir.
cp $egs_dir/{cmvn_opts,splice_opts,final.mat} $dir 2>/dev/null
# confirm that the egs_dir has the necessary context (especially important if
# the --egs-dir option was used on the command line).
egs_left_context=$(cat $egs_dir/info/left_context) || exit -1
egs_right_context=$(cat $egs_dir/info/right_context) || exit -1
( [ $egs_left_context -lt $left_context ] || \
[ $egs_right_context -lt $right_context ] ) && \
echo "$0: egs in $egs_dir have too little context" && exit -1;
chunk_width=$(cat $egs_dir/info/frames_per_eg) || { echo "error: no such file $egs_dir/info/frames_per_eg"; exit 1; }
num_archives=$(cat $egs_dir/info/num_archives) || { echo "error: no such file $egs_dir/info/num_archives"; exit 1; }
[ $num_jobs_initial -gt $num_jobs_final ] && \
echo "$0: --initial-num-jobs cannot exceed --final-num-jobs" && exit 1;
[ $num_jobs_final -gt $num_archives ] && \
echo "$0: --final-num-jobs cannot exceed #archives $num_archives." && exit 1;
if [ $stage -le -3 ]; then
echo "$0: getting preconditioning matrix for input features."
num_lda_jobs=$num_archives
[ $num_lda_jobs -gt $max_lda_jobs ] && num_lda_jobs=$max_lda_jobs
# Write stats with the same format as stats for LDA.
$cmd JOB=1:$num_lda_jobs $dir/log/get_lda_stats.JOB.log \
nnet3-acc-lda-stats --rand-prune=$rand_prune \
$dir/init.raw "ark:$egs_dir/egs.JOB.ark" $dir/JOB.lda_stats || exit 1;
all_lda_accs=$(for n in $(seq $num_lda_jobs); do echo $dir/$n.lda_stats; done)
$cmd $dir/log/sum_transform_stats.log \
sum-lda-accs $dir/lda_stats $all_lda_accs || exit 1;
rm $all_lda_accs || exit 1;
# this computes a fixed affine transform computed in the way we described in
# Appendix C.6 of http://arxiv.org/pdf/1410.7455v6.pdf; it's a scaled variant
# of an LDA transform but without dimensionality reduction.
$cmd $dir/log/get_transform.log \
nnet-get-feature-transform $lda_opts $dir/lda.mat $dir/lda_stats || exit 1;
ln -sf ../lda.mat $dir/configs/lda.mat
fi
if [ $stage -le -2 ]; then
echo "$0: preparing initial vector for FixedScaleComponent before softmax"
echo " ... using priors^$presoftmax_prior_scale_power and rescaling to average 1"
# obtains raw pdf count
$cmd JOB=1:$nj $dir/log/acc_pdf.JOB.log \
ali-to-post "ark:gunzip -c $alidir/ali.JOB.gz|" ark:- \| \
post-to-tacc --per-pdf=true $alidir/final.mdl ark:- $dir/pdf_counts.JOB || exit 1;
$cmd $dir/log/sum_pdf_counts.log \
vector-sum --binary=false $dir/pdf_counts.* $dir/pdf_counts || exit 1;
rm $dir/pdf_counts.*
awk -v power=$presoftmax_prior_scale_power -v smooth=0.01 \
'{ for(i=2; i<=NF-1; i++) { count[i-2] = $i; total += $i; }
num_pdfs=NF-2; average_count = total/num_pdfs;
for (i=0; i<num_pdfs; i++) stot += (scale[i] = (count[i] + smooth * average_count)^power)
printf " [ "; for (i=0; i<num_pdfs; i++) printf("%f ", scale[i]*num_pdfs/stot); print "]" }' \
$dir/pdf_counts > $dir/presoftmax_prior_scale.vec
ln -sf ../presoftmax_prior_scale.vec $dir/configs/presoftmax_prior_scale.vec
fi
if [ $stage -le -1 ]; then
# Add the first layer; this will add in the lda.mat and
# presoftmax_prior_scale.vec.
$cmd $dir/log/add_first_layer.log \
nnet3-init --srand=-3 $dir/init.raw $dir/configs/layer1.config $dir/0.raw || exit 1;
# Convert to .mdl, train the transitions, set the priors.
$cmd $dir/log/init_mdl.log \
nnet3-am-init $alidir/final.mdl $dir/0.raw - \| \
nnet3-am-train-transitions - "ark:gunzip -c $alidir/ali.*.gz|" $dir/0.mdl || exit 1;
fi
# set num_iters so that as close as possible, we process the data $num_epochs
# times, i.e. $num_iters*$avg_num_jobs) == $num_epochs*$num_archives,
# where avg_num_jobs=(num_jobs_initial+num_jobs_final)/2.
num_archives_to_process=$[$num_epochs*$num_archives]
num_archives_processed=0
num_iters=$[($num_archives_to_process*2)/($num_jobs_initial+$num_jobs_final)]
! [ $num_iters -gt $[$finish_add_layers_iter+2] ] \
&& echo "$0: Insufficient epochs" && exit 1
finish_add_layers_iter=$[$num_hidden_layers * $add_layers_period]
echo "$0: Will train for $num_epochs epochs = $num_iters iterations"
if $use_gpu; then
parallel_suffix=""
train_queue_opt="--gpu 1"
combine_queue_opt="--gpu 1"
prior_gpu_opt="--use-gpu=yes"
prior_queue_opt="--gpu 1"
parallel_train_opts=
if ! cuda-compiled; then
echo "$0: WARNING: you are running with one thread but you have not compiled"
echo " for CUDA. You may be running a setup optimized for GPUs. If you have"
echo " GPUs and have nvcc installed, go to src/ and do ./configure; make"
exit 1
fi
else
echo "$0: without using a GPU this will be very slow. nnet3 does not yet support multiple threads."
parallel_train_opts="--use-gpu=no"
combine_queue_opt="" # the combine stage will be quite slow if not using
# GPU, as we didn't enable that program to use
# multiple threads.
prior_gpu_opt="--use-gpu=no"
prior_queue_opt=""
fi
approx_iters_per_epoch_final=$[$num_archives/$num_jobs_final]
# First work out how many iterations we want to combine over in the final
# nnet3-combine-fast invocation. (We may end up subsampling from these if the
# number exceeds max_model_combine). The number we use is:
# min(max(max_models_combine, approx_iters_per_epoch_final),
# 1/2 * iters_after_last_layer_added)
num_iters_combine=$max_models_combine
if [ $num_iters_combine -lt $approx_iters_per_epoch_final ]; then
num_iters_combine=$approx_iters_per_epoch_final
fi
half_iters_after_add_layers=$[($num_iters-$finish_add_layers_iter)/2]
if [ $num_iters_combine -gt $half_iters_after_add_layers ]; then
num_iters_combine=$half_iters_after_add_layers
fi
first_model_combine=$[$num_iters-$num_iters_combine+1]
x=0
for realign_time in $realign_times; do
# Work out the iterations on which we will re-align, if the --realign-times
# option was used. This is slightly approximate.
! perl -e "exit($realign_time > 0.0 && $realign_time < 1.0 ? 0:1);" && \
echo "Invalid --realign-times option $realign_times: elements must be strictly between 0 and 1.";
# the next formula is based on the one for mix_up_iter above.
realign_iter=$(perl -e '($j,$k,$n,$p)=@ARGV; print int(0.5 + ($j==$k ? $n*$p : $n*(sqrt((1-$p)*$j*$j+$p*$k*$k)-$j)/($k-$j))); ' $num_jobs_initial $num_jobs_final $num_iters $realign_time) || exit 1;
realign_this_iter[$realign_iter]=$realign_time
done
cur_egs_dir=$egs_dir
[ -z $num_bptt_steps ] && num_bptt_steps=$chunk_width;
min_deriv_time=$((chunk_width - num_bptt_steps))
while [ $x -lt $num_iters ]; do
[ $x -eq $exit_stage ] && echo "$0: Exiting early due to --exit-stage $exit_stage" && exit 0;
this_num_jobs=$(perl -e "print int(0.5+$num_jobs_initial+($num_jobs_final-$num_jobs_initial)*$x/$num_iters);")
ilr=$initial_effective_lrate; flr=$final_effective_lrate; np=$num_archives_processed; nt=$num_archives_to_process;
this_effective_learning_rate=$(perl -e "print ($x + 1 >= $num_iters ? $flr : $ilr*exp($np*log($flr/$ilr)/$nt));");
this_learning_rate=$(perl -e "print ($this_effective_learning_rate*$this_num_jobs);");
if [ ! -z "${realign_this_iter[$x]}" ]; then
prev_egs_dir=$cur_egs_dir
cur_egs_dir=$dir/egs_${realign_this_iter[$x]}
fi
if [ $x -ge 0 ] && [ $stage -le $x ]; then
# Set this_shrink value.
if [ $x -eq 0 ] || nnet3-am-info --print-args=false $dir/$x.mdl | \
perl -e "while(<>){ if (m/type=Sigmoid.+deriv-avg=.+mean=(\S+)/) { \$n++; \$tot+=\$1; } } exit(\$tot/\$n > $shrink_threshold);"; then
this_shrink=$shrink; # e.g. avg-deriv of sigmoids was <= 0.125, so shrink.
else
this_shrink=1.0 # don't shrink: sigmoids are not over-saturated.
fi
echo "On iteration $x, learning rate is $this_learning_rate and shrink value is $this_shrink."
if [ ! -z "${realign_this_iter[$x]}" ]; then
time=${realign_this_iter[$x]}
echo "Getting average posterior for purposes of adjusting the priors."
# Note: this just uses CPUs, using a smallish subset of data.
# always use the first egs archive, which makes the script simpler;
# we're using different random subsets of it.
rm $dir/post.$x.*.vec 2>/dev/null
$cmd JOB=1:$num_jobs_compute_prior $dir/log/get_post.$x.JOB.log \
nnet3-copy-egs --srand=JOB --frame=random $context_opts ark:$prev_egs_dir/egs.1.ark ark:- \| \
nnet3-subset-egs --srand=JOB --n=$prior_subset_size ark:- ark:- \| \
nnet3-merge-egs ark:- ark:- \| \
nnet3-compute-from-egs --apply-exp=true "nnet3-am-copy --raw=true $dir/$x.mdl -|" ark:- ark:- \| \
matrix-sum-rows ark:- ark:- \| vector-sum ark:- $dir/post.$x.JOB.vec || exit 1;
sleep 3; # make sure there is time for $dir/post.$x.*.vec to appear.
$cmd $dir/log/vector_sum.$x.log \
vector-sum $dir/post.$x.*.vec $dir/post.$x.vec || exit 1;
rm $dir/post.$x.*.vec;
echo "Re-adjusting priors based on computed posteriors"
$cmd $dir/log/adjust_priors.$x.log \
nnet3-am-adjust-priors $dir/$x.mdl $dir/post.$x.vec $dir/$x.mdl || exit 1;
sleep 2
steps/nnet3/align.sh --nj $num_jobs_align --cmd "$align_cmd" --use-gpu $align_use_gpu \
--transform-dir "$transform_dir" --online-ivector-dir "$online_ivector_dir" \
--iter $x $data $lang $dir $dir/ali_$time || exit 1
steps/nnet3/relabel_egs.sh --cmd "$cmd" --iter $x $dir/ali_$time \
$prev_egs_dir $cur_egs_dir || exit 1
if $cleanup && [[ $prev_egs_dir =~ $dir/egs* ]]; then
steps/nnet3/remove_egs.sh $prev_egs_dir
fi
fi
# Set off jobs doing some diagnostics, in the background.
# Use the egs dir from the previous iteration for the diagnostics
$cmd $dir/log/compute_prob_valid.$x.log \
nnet3-compute-prob "nnet3-am-copy --raw=true $dir/$x.mdl - |" \
"ark,bg:nnet3-merge-egs ark:$cur_egs_dir/valid_diagnostic.egs ark:- |" &
$cmd $dir/log/compute_prob_train.$x.log \
nnet3-compute-prob "nnet3-am-copy --raw=true $dir/$x.mdl - |" \
"ark,bg:nnet3-merge-egs ark:$cur_egs_dir/train_diagnostic.egs ark:- |" &
if [ $x -gt 0 ]; then
$cmd $dir/log/progress.$x.log \
nnet3-info "nnet3-am-copy --raw=true $dir/$x.mdl - |" '&&' \
nnet3-show-progress --use-gpu=no "nnet3-am-copy --raw=true $dir/$[$x-1].mdl - |" "nnet3-am-copy --raw=true $dir/$x.mdl - |" \
"ark,bg:nnet3-merge-egs --minibatch-size=256 ark:$cur_egs_dir/train_diagnostic.egs ark:-|" &
fi
echo "Training neural net (pass $x)"
if [ $x -gt 0 ] && \
[ $x -le $[($num_hidden_layers-1)*$add_layers_period] ] && \
[ $[$x%$add_layers_period] -eq 0 ]; then
do_average=false # if we've just mixed up, don't do averaging but take the
# best.
cur_num_hidden_layers=$[1+$x/$add_layers_period]
config=$dir/configs/layer$cur_num_hidden_layers.config
raw="nnet3-am-copy --raw=true --learning-rate=$this_learning_rate $dir/$x.mdl - | nnet3-init --srand=$x - $config - |"
cache_read_opt="" # an option for writing cache (storing pairs of nnet-computations
# and computation-requests) during training.
else
do_average=true
if [ $x -eq 0 ]; then do_average=false; fi # on iteration 0, pick the best, don't average.
raw="nnet3-am-copy --raw=true --learning-rate=$this_learning_rate $dir/$x.mdl -|"
cache_read_opt="--read-cache=$dir/cache.$x"
fi
if $do_average; then
this_num_chunk_per_minibatch=$num_chunk_per_minibatch
else
# on iteration zero or when we just added a layer, use a smaller minibatch
# size (and we will later choose the output of just one of the jobs): the
# model-averaging isn't always helpful when the model is changing too fast
# (i.e. it can worsen the objective function), and the smaller minibatch
# size will help to keep the update stable.
this_num_chunk_per_minibatch=$[$num_chunk_per_minibatch/2];
fi
rm $dir/.error 2>/dev/null
( # this sub-shell is so that when we "wait" below,
# we only wait for the training jobs that we just spawned,
# not the diagnostic jobs that we spawned above.
# We cannot easily use a single parallel SGE job to do the main training,
# because the computation of which archive and which --frame option
# to use for each job is a little complex, so we spawn each one separately.
# this is no longer true for RNNs as we use do not use the --frame option
# but we use the same script for consistency with FF-DNN code
for n in $(seq $this_num_jobs); do
k=$[$num_archives_processed + $n - 1]; # k is a zero-based index that we will derive
# the other indexes from.
archive=$[($k%$num_archives)+1]; # work out the 1-based archive index.
if [ $n -eq 1 ]; then
# an option for writing cache (storing pairs of nnet-computations and
# computation-requests) during training.
cache_write_opt=" --write-cache=$dir/cache.$[$x+1]"
else
cache_write_opt=""
fi
$cmd $train_queue_opt $dir/log/train.$x.$n.log \
nnet3-train $parallel_train_opts $cache_read_opt $cache_write_opt --print-interval=10 --momentum=$momentum \
--max-param-change=$max_param_change \
--optimization.min-deriv-time=$min_deriv_time "$raw" \
"ark,bg:nnet3-copy-egs $context_opts ark:$cur_egs_dir/egs.$archive.ark ark:- | nnet3-shuffle-egs --buffer-size=$shuffle_buffer_size --srand=$x ark:- ark:-| nnet3-merge-egs --minibatch-size=$this_num_chunk_per_minibatch --measure-output-frames=false --discard-partial-minibatches=true ark:- ark:- |" \
$dir/$[$x+1].$n.raw || touch $dir/.error &
done
wait
)
# the error message below is not that informative, but $cmd will
# have printed a more specific one.
[ -f $dir/.error ] && echo "$0: error on iteration $x of training" && exit 1;
models_to_average=$(steps/nnet3/get_successful_models.py $this_num_jobs $dir/log/train.$x.%.log)
nnets_list=
for n in $models_to_average; do
nnets_list="$nnets_list $dir/$[$x+1].$n.raw"
done
if $do_average; then
# average the output of the different jobs.
$cmd $dir/log/average.$x.log \
nnet3-average $nnets_list - \| \
nnet3-am-copy --scale=$this_shrink --set-raw-nnet=- $dir/$x.mdl $dir/$[$x+1].mdl || exit 1;
else
# choose the best from the different jobs.
n=$(perl -e '($nj,$pat)=@ARGV; $best_n=1; $best_logprob=-1.0e+10; for ($n=1;$n<=$nj;$n++) {
$fn = sprintf($pat,$n); open(F, "<$fn") || die "Error opening log file $fn";
undef $logprob; while (<F>) { if (m/log-prob-per-frame=(\S+)/) { $logprob=$1; } }
close(F); if (defined $logprob && $logprob > $best_logprob) { $best_logprob=$logprob;
$best_n=$n; } } print "$best_n\n"; ' $this_num_jobs $dir/log/train.$x.%d.log) || exit 1;
[ -z "$n" ] && echo "Error getting best model" && exit 1;
$cmd $dir/log/select.$x.log \
nnet3-am-copy --scale=$this_shrink --set-raw-nnet=$dir/$[$x+1].$n.raw $dir/$x.mdl $dir/$[$x+1].mdl || exit 1;
fi
nnets_list=
for n in `seq 1 $this_num_jobs`; do
nnets_list="$nnets_list $dir/$[$x+1].$n.raw"
done
rm $nnets_list
[ ! -f $dir/$[$x+1].mdl ] && exit 1;
if [ -f $dir/$[$x-1].mdl ] && $cleanup && \
[ $[($x-1)%100] -ne 0 ] && [ $[$x-1] -lt $first_model_combine ]; then
rm $dir/$[$x-1].mdl
fi
fi
rm $dir/cache.$x 2>/dev/null
x=$[$x+1]
num_archives_processed=$[$num_archives_processed+$this_num_jobs]
done
if [ $stage -le $num_iters ]; then
echo "Doing final combination to produce final.mdl"
# Now do combination. In the nnet3 setup, the logic
# for doing averaging of subsets of the models in the case where
# there are too many models to reliably esetimate interpolation
# factors (max_models_combine) is moved into the nnet3-combine
nnets_list=()
for n in $(seq 0 $[num_iters_combine-1]); do
iter=$[$first_model_combine+$n]
mdl=$dir/$iter.mdl
[ ! -f $mdl ] && echo "Expected $mdl to exist" && exit 1;
nnets_list[$n]="nnet3-am-copy --raw=true $mdl -|";
done
combine_num_chunk_per_minibatch=$(python -c "print int(1024.0/($chunk_width))")
$cmd $combine_queue_opt $dir/log/combine.log \
nnet3-combine --num-iters=40 \
--enforce-sum-to-one=true --enforce-positive-weights=true \
--verbose=3 "${nnets_list[@]}" "ark,bg:nnet3-merge-egs --measure-output-frames=false --minibatch-size=$combine_num_chunk_per_minibatch ark:$cur_egs_dir/combine.egs ark:-|" \
"|nnet3-am-copy --set-raw-nnet=- $dir/$num_iters.mdl $dir/combined.mdl" || exit 1;
# Compute the probability of the final, combined model with
# the same subset we used for the previous compute_probs, as the
# different subsets will lead to different probs.
$cmd $dir/log/compute_prob_valid.final.log \
nnet3-compute-prob "nnet3-am-copy --raw=true $dir/combined.mdl -|" \
"ark,bg:nnet3-merge-egs --minibatch-size=256 ark:$cur_egs_dir/valid_diagnostic.egs ark:- |" &
$cmd $dir/log/compute_prob_train.final.log \
nnet3-compute-prob "nnet3-am-copy --raw=true $dir/combined.mdl -|" \
"ark,bg:nnet3-merge-egs --minibatch-size=256 ark:$cur_egs_dir/train_diagnostic.egs ark:- |" &
fi
if [ $stage -le $[$num_iters+1] ]; then
echo "Getting average posterior for purposes of adjusting the priors."
# Note: this just uses CPUs, using a smallish subset of data.
rm $dir/post.$x.*.vec 2>/dev/null
if [ $num_jobs_compute_prior -gt $num_archives ]; then egs_part=1;
else egs_part=JOB; fi
$cmd JOB=1:$num_jobs_compute_prior $prior_queue_opt $dir/log/get_post.$x.JOB.log \
nnet3-subset-egs --srand=JOB --n=$prior_subset_size ark:$cur_egs_dir/egs.$egs_part.ark ark:- \| \
nnet3-merge-egs --measure-output-frames=true --minibatch-size=128 ark:- ark:- \| \
nnet3-compute-from-egs $prior_gpu_opt --apply-exp=true \
"nnet3-am-copy --raw=true $dir/combined.mdl -|" ark:- ark:- \| \
matrix-sum-rows ark:- ark:- \| vector-sum ark:- $dir/post.$x.JOB.vec || exit 1;
sleep 3; # make sure there is time for $dir/post.$x.*.vec to appear.
$cmd $dir/log/vector_sum.$x.log \
vector-sum $dir/post.$x.*.vec $dir/post.$x.vec || exit 1;
rm $dir/post.$x.*.vec;
echo "Re-adjusting priors based on computed posteriors"
$cmd $dir/log/adjust_priors.final.log \
nnet3-am-adjust-priors $dir/combined.mdl $dir/post.$x.vec $dir/final.mdl || exit 1;
fi
if [ ! -f $dir/final.mdl ]; then
echo "$0: $dir/final.mdl does not exist."
# we don't want to clean up if the training didn't succeed.
exit 1;
fi
sleep 2
echo Done
if $cleanup; then
echo Cleaning up data
if $remove_egs && [[ $cur_egs_dir =~ $dir/egs* ]]; then
steps/nnet2/remove_egs.sh $cur_egs_dir
fi
echo Removing most of the models
for x in `seq 0 $num_iters`; do
if [ $[$x%100] -ne 0 ] && [ $x -ne $num_iters ] && [ -f $dir/$x.mdl ]; then
# delete all but every 100th model; don't delete the ones which combine to form the final model.
rm $dir/$x.mdl
fi
done
fi