Blame view
egs/wsj/s5/steps/segmentation/detect_speech_activity.sh
10.4 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
#!/bin/bash # Copyright 2016-17 Vimal Manohar # 2017 Nagendra Kumar Goel # Apache 2.0. # This script does nnet3-based speech activity detection given an input # kaldi data directory and outputs a segmented kaldi data directory. # This script can also do music detection and other similar segmentation # using appropriate options such as --output-name output-music. set -e set -o pipefail set -u if [ -f ./path.sh ]; then . ./path.sh; fi affix= # Affix for the segmentation nj=32 cmd=queue.pl stage=-1 # Feature options (Must match training) mfcc_config=conf/mfcc_hires.conf feat_affix= # Affix for the type of feature used convert_data_dir_to_whole=true # If true, the input data directory is # first converted to whole data directory (i.e. whole recordings) # and segmentation is done on that. # If false, then the original segments are # retained and they are split into sub-segments. output_name=output # The output node in the network sad_name=sad # Base name for the directory storing the computed loglikes # Can be music for music detection segmentation_name=segmentation # Base name for the directory doing segmentation # Can be segmentation_music for music detection # SAD network config iter=final # Model iteration to use # Contexts must ideally match training for LSTM models, but # may not necessarily for stats components extra_left_context=0 # Set to some large value, typically 40 for LSTM (must match training) extra_right_context=0 extra_left_context_initial=-1 extra_right_context_final=-1 frames_per_chunk=150 # Decoding options graph_opts="--min-silence-duration=0.03 --min-speech-duration=0.3 --max-speech-duration=10.0" acwt=0.3 # These <from>_in_<to>_weight represent the fraction of <from> probability # to transfer to <to> class. # e.g. --speech-in-sil-weight=0.0 --garbage-in-sil-weight=0.0 --sil-in-speech-weight=0.0 --garbage-in-speech-weight=0.3 transform_probs_opts="" # Postprocessing options segment_padding=0.2 # Duration (in seconds) of padding added to segments min_segment_dur=0 # Minimum duration (in seconds) required for a segment to be included # This is before any padding. Segments shorter than this duration will be removed. # This is an alternative to --min-speech-duration above. merge_consecutive_max_dur=0 # Merge consecutive segments as long as the merged segment is no longer than this many # seconds. The segments are only merged if their boundaries are touching. # This is after padding by --segment-padding seconds. # 0 means do not merge. Use 'inf' to not limit the duration. echo $* . utils/parse_options.sh if [ $# -ne 5 ]; then echo "This script does nnet3-based speech activity detection given an input kaldi " echo "data directory and outputs an output kaldi data directory." echo "See script for details of the options to be supplied." echo "Usage: $0 <src-data-dir> <sad-nnet-dir> <mfcc-dir> <work-dir> <out-data-dir>" echo " e.g.: $0 ~/workspace/egs/ami/s5b/data/sdm1/dev exp/nnet3_sad_snr/nnet_tdnn_j_n4 \\" echo " mfcc_hires exp/segmentation_sad_snr/nnet_tdnn_j_n4 data/ami_sdm1_dev" echo "" echo "Options: " echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs." echo " --nj <num-job> # number of parallel jobs to run." echo " --stage <stage> # stage to do partial re-run from." echo " --convert-data-dir-to-whole <true|false> # If true, the input data directory is " echo " # first converted to whole data directory (i.e. whole recordings) " echo " # and segmentation is done on that." echo " # If false, then the original segments are " echo " # retained and they are split into sub-segments." echo " --output-name <name> # The output node in the network" echo " --extra-left-context <context|0> # Set to some large value, typically 40 for LSTM (must match training)" echo " --extra-right-context <context|0> # For BLSTM or statistics pooling" exit 1 fi src_data_dir=$1 # The input data directory that needs to be segmented. # If convert_data_dir_to_whole is true, any segments in that will be ignored. sad_nnet_dir=$2 # The SAD neural network mfcc_dir=$3 # The directory to store the features dir=$4 # Work directory data_dir=$5 # The output data directory will be ${data_dir}_seg affix=${affix:+_$affix} feat_affix=${feat_affix:+_$feat_affix} data_id=`basename $data_dir` sad_dir=${dir}/${sad_name}${affix}_${data_id}_whole${feat_affix} seg_dir=${dir}/${segmentation_name}${affix}_${data_id}_whole${feat_affix} if $convert_data_dir_to_whole; then test_data_dir=data/${data_id}_whole${feat_affix}_hires if [ $stage -le 0 ]; then rm -r ${test_data_dir} || true utils/data/convert_data_dir_to_whole.sh $src_data_dir ${test_data_dir} fi else test_data_dir=data/${data_id}${feat_affix}_hires if [ $stage -le 0 ]; then rm -r ${test_data_dir} || true utils/copy_data_dir.sh $src_data_dir $test_data_dir fi fi ############################################################################### ## Extract input features ############################################################################### if [ $stage -le 1 ]; then utils/fix_data_dir.sh $test_data_dir steps/make_mfcc.sh --mfcc-config $mfcc_config --nj $nj --cmd "$cmd" --write-utt2num-frames true \ ${test_data_dir} exp/make_hires$feat_affix/${data_id} $mfcc_dir steps/compute_cmvn_stats.sh ${test_data_dir} exp/make_hires$feat_affix/${data_id} $mfcc_dir utils/fix_data_dir.sh ${test_data_dir} fi ############################################################################### ## Forward pass through the network network and dump the log-likelihoods. ############################################################################### frame_subsampling_factor=1 if [ -f $sad_nnet_dir/frame_subsampling_factor ]; then frame_subsampling_factor=$(cat $sad_nnet_dir/frame_subsampling_factor) fi mkdir -p $dir if [ $stage -le 4 ]; then if [ "$(readlink -f $sad_nnet_dir)" != "$(readlink -f $dir)" ]; then cp $sad_nnet_dir/cmvn_opts $dir || exit 1 fi ######################################################################## ## Initialize neural network for decoding using the output $output_name ######################################################################## if [ ! -z "$output_name" ] && [ "$output_name" != output ]; then $cmd $dir/log/get_nnet_${output_name}.log \ nnet3-copy --edits="rename-node old-name=$output_name new-name=output" \ $sad_nnet_dir/$iter.raw $dir/${iter}_${output_name}.raw || exit 1 iter=${iter}_${output_name} else if ! diff $sad_nnet_dir/$iter.raw $dir/$iter.raw; then cp $sad_nnet_dir/$iter.raw $dir/ fi fi steps/nnet3/compute_output.sh --nj $nj --cmd "$cmd" \ --iter ${iter} \ --extra-left-context $extra_left_context \ --extra-right-context $extra_right_context \ --extra-left-context-initial $extra_left_context_initial \ --extra-right-context-final $extra_right_context_final \ --frames-per-chunk $frames_per_chunk --apply-exp true \ --frame-subsampling-factor $frame_subsampling_factor \ ${test_data_dir} $dir $sad_dir || exit 1 fi ############################################################################### ## Prepare FST we search to make speech/silence decisions. ############################################################################### utils/data/get_utt2dur.sh --nj $nj --cmd "$cmd" $test_data_dir || exit 1 frame_shift=$(utils/data/get_frame_shift.sh $test_data_dir) || exit 1 graph_dir=${dir}/graph_${output_name} if [ $stage -le 5 ]; then mkdir -p $graph_dir # 1 for silence and 2 for speech cat <<EOF > $graph_dir/words.txt <eps> 0 silence 1 speech 2 EOF $cmd $graph_dir/log/make_graph.log \ steps/segmentation/internal/prepare_sad_graph.py $graph_opts \ --frame-shift=$(perl -e "print $frame_shift * $frame_subsampling_factor") - \| \ fstcompile --isymbols=$graph_dir/words.txt --osymbols=$graph_dir/words.txt '>' \ $graph_dir/HCLG.fst fi ############################################################################### ## Do Viterbi decoding to create per-frame alignments. ############################################################################### post_vec=$sad_nnet_dir/post_${output_name}.vec if [ ! -f $sad_nnet_dir/post_${output_name}.vec ]; then if [ ! -f $sad_nnet_dir/post_${output_name}.txt ]; then echo "$0: Could not find $sad_nnet_dir/post_${output_name}.vec. " echo "Re-run the corresponding stage in the training script possibly " echo "with --compute-average-posteriors=true or compute the priors " echo "from the training labels" exit 1 else post_vec=$sad_nnet_dir/post_${output_name}.txt fi fi mkdir -p $seg_dir if [ $stage -le 6 ]; then steps/segmentation/internal/get_transform_probs_mat.py \ --priors="$post_vec" $transform_probs_opts > $seg_dir/transform_probs.mat steps/segmentation/decode_sad.sh --acwt $acwt --cmd "$cmd" \ --nj $nj \ --transform "$seg_dir/transform_probs.mat" \ $graph_dir $sad_dir $seg_dir fi ############################################################################### ## Post-process segmentation to create kaldi data directory. ############################################################################### if [ $stage -le 7 ]; then steps/segmentation/post_process_sad_to_segments.sh \ --segment-padding $segment_padding --min-segment-dur $min_segment_dur \ --merge-consecutive-max-dur $merge_consecutive_max_dur \ --cmd "$cmd" --frame-shift $(perl -e "print $frame_subsampling_factor * $frame_shift") \ ${test_data_dir} ${seg_dir} ${seg_dir} fi if [ $stage -le 8 ]; then utils/data/subsegment_data_dir.sh ${test_data_dir} ${seg_dir}/segments \ ${data_dir}_seg cp $src_data_dir/wav.scp ${data_dir}_seg cp $src_data_dir/{stm,reco2file_and_channel,glm} ${data_dir}_seg/ || true utils/fix_data_dir.sh ${data_dir}_seg fi echo "$0: Created output segmented kaldi data directory in ${data_dir}_seg" exit 0 |