Blame view

egs/wsj/s5/steps/segmentation/detect_speech_activity.sh 10.4 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
  #!/bin/bash
  
  # Copyright 2016-17  Vimal Manohar
  #              2017  Nagendra Kumar Goel
  # Apache 2.0.
  
  # This script does nnet3-based speech activity detection given an input 
  # kaldi data directory and outputs a segmented kaldi data directory.
  # This script can also do music detection and other similar segmentation
  # using appropriate options such as --output-name output-music.
  
  set -e 
  set -o pipefail
  set -u
  
  if [ -f ./path.sh ]; then . ./path.sh; fi
  
  affix=  # Affix for the segmentation
  nj=32
  cmd=queue.pl
  stage=-1
  
  # Feature options (Must match training)
  mfcc_config=conf/mfcc_hires.conf
  feat_affix=   # Affix for the type of feature used
  
  convert_data_dir_to_whole=true    # If true, the input data directory is 
                                    # first converted to whole data directory (i.e. whole recordings)
                                    # and segmentation is done on that.
                                    # If false, then the original segments are 
                                    # retained and they are split into sub-segments.
  
  output_name=output   # The output node in the network
  sad_name=sad    # Base name for the directory storing the computed loglikes
                  # Can be music for music detection
  segmentation_name=segmentation  # Base name for the directory doing segmentation
                                  # Can be segmentation_music for music detection
  
  # SAD network config
  iter=final  # Model iteration to use
  
  # Contexts must ideally match training for LSTM models, but
  # may not necessarily for stats components
  extra_left_context=0  # Set to some large value, typically 40 for LSTM (must match training)
  extra_right_context=0  
  extra_left_context_initial=-1
  extra_right_context_final=-1
  frames_per_chunk=150
  
  # Decoding options
  graph_opts="--min-silence-duration=0.03 --min-speech-duration=0.3 --max-speech-duration=10.0"
  acwt=0.3
  
  # These <from>_in_<to>_weight represent the fraction of <from> probability 
  # to transfer to <to> class.
  # e.g. --speech-in-sil-weight=0.0 --garbage-in-sil-weight=0.0 --sil-in-speech-weight=0.0 --garbage-in-speech-weight=0.3
  transform_probs_opts=""
  
  # Postprocessing options
  segment_padding=0.2   # Duration (in seconds) of padding added to segments 
  min_segment_dur=0   # Minimum duration (in seconds) required for a segment to be included
                      # This is before any padding. Segments shorter than this duration will be removed.
                      # This is an alternative to --min-speech-duration above.
  merge_consecutive_max_dur=0   # Merge consecutive segments as long as the merged segment is no longer than this many
                                # seconds. The segments are only merged if their boundaries are touching.
                                # This is after padding by --segment-padding seconds.
                                # 0 means do not merge. Use 'inf' to not limit the duration.
  
  echo $* 
  
  . utils/parse_options.sh
  
  if [ $# -ne 5 ]; then
    echo "This script does nnet3-based speech activity detection given an input kaldi "
    echo "data directory and outputs an output kaldi data directory."
    echo "See script for details of the options to be supplied."
    echo "Usage: $0 <src-data-dir> <sad-nnet-dir> <mfcc-dir> <work-dir> <out-data-dir>"
    echo " e.g.: $0 ~/workspace/egs/ami/s5b/data/sdm1/dev exp/nnet3_sad_snr/nnet_tdnn_j_n4 \\"
    echo "    mfcc_hires exp/segmentation_sad_snr/nnet_tdnn_j_n4 data/ami_sdm1_dev"
    echo ""
    echo "Options: "
    echo "  --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs."
    echo "  --nj <num-job>                                 # number of parallel jobs to run."
    echo "  --stage <stage>                                # stage to do partial re-run from."
    echo "  --convert-data-dir-to-whole <true|false>    # If true, the input data directory is "
    echo "                                              # first converted to whole data directory (i.e. whole recordings) "
    echo "                                              # and segmentation is done on that."
    echo "                                              # If false, then the original segments are "
    echo "                                              # retained and they are split into sub-segments."
    echo "  --output-name <name>    # The output node in the network"
    echo "  --extra-left-context  <context|0>   # Set to some large value, typically 40 for LSTM (must match training)"
    echo "  --extra-right-context  <context|0>   # For BLSTM or statistics pooling"
    exit 1
  fi
  
  src_data_dir=$1   # The input data directory that needs to be segmented.
                    # If convert_data_dir_to_whole is true, any segments in that will be ignored.
  sad_nnet_dir=$2   # The SAD neural network
  mfcc_dir=$3       # The directory to store the features
  dir=$4            # Work directory
  data_dir=$5       # The output data directory will be ${data_dir}_seg
  
  affix=${affix:+_$affix}
  feat_affix=${feat_affix:+_$feat_affix}
  
  data_id=`basename $data_dir`
  sad_dir=${dir}/${sad_name}${affix}_${data_id}_whole${feat_affix}
  seg_dir=${dir}/${segmentation_name}${affix}_${data_id}_whole${feat_affix}
  
  if $convert_data_dir_to_whole; then
    test_data_dir=data/${data_id}_whole${feat_affix}_hires
    if [ $stage -le 0 ]; then
      rm -r ${test_data_dir} || true
      utils/data/convert_data_dir_to_whole.sh $src_data_dir ${test_data_dir}
    fi
  else
    test_data_dir=data/${data_id}${feat_affix}_hires
    if [ $stage -le 0 ]; then
      rm -r ${test_data_dir} || true
      utils/copy_data_dir.sh $src_data_dir $test_data_dir
    fi
  fi
  
  ###############################################################################
  ## Extract input features 
  ###############################################################################
  
  if [ $stage -le 1 ]; then
    utils/fix_data_dir.sh $test_data_dir
    steps/make_mfcc.sh --mfcc-config $mfcc_config --nj $nj --cmd "$cmd" --write-utt2num-frames true \
      ${test_data_dir} exp/make_hires$feat_affix/${data_id} $mfcc_dir
    steps/compute_cmvn_stats.sh ${test_data_dir} exp/make_hires$feat_affix/${data_id} $mfcc_dir
    utils/fix_data_dir.sh ${test_data_dir}
  fi
  
  ###############################################################################
  ## Forward pass through the network network and dump the log-likelihoods.
  ###############################################################################
  
  frame_subsampling_factor=1
  if [ -f $sad_nnet_dir/frame_subsampling_factor ]; then
    frame_subsampling_factor=$(cat $sad_nnet_dir/frame_subsampling_factor)
  fi
  
  mkdir -p $dir
  if [ $stage -le 4 ]; then
    if [ "$(readlink -f $sad_nnet_dir)" != "$(readlink -f $dir)" ]; then
      cp $sad_nnet_dir/cmvn_opts $dir || exit 1
    fi
  
    ########################################################################
    ## Initialize neural network for decoding using the output $output_name
    ########################################################################
  
    if [ ! -z "$output_name" ] && [ "$output_name" != output ]; then
      $cmd $dir/log/get_nnet_${output_name}.log \
        nnet3-copy --edits="rename-node old-name=$output_name new-name=output" \
        $sad_nnet_dir/$iter.raw $dir/${iter}_${output_name}.raw || exit 1
      iter=${iter}_${output_name}
    else 
      if ! diff $sad_nnet_dir/$iter.raw $dir/$iter.raw; then
        cp $sad_nnet_dir/$iter.raw $dir/
      fi
    fi
  
    steps/nnet3/compute_output.sh --nj $nj --cmd "$cmd" \
      --iter ${iter} \
      --extra-left-context $extra_left_context \
      --extra-right-context $extra_right_context \
      --extra-left-context-initial $extra_left_context_initial \
      --extra-right-context-final $extra_right_context_final \
      --frames-per-chunk $frames_per_chunk --apply-exp true \
      --frame-subsampling-factor $frame_subsampling_factor \
      ${test_data_dir} $dir $sad_dir || exit 1
  fi
  
  ###############################################################################
  ## Prepare FST we search to make speech/silence decisions.
  ###############################################################################
  
  utils/data/get_utt2dur.sh --nj $nj --cmd "$cmd" $test_data_dir || exit 1
  frame_shift=$(utils/data/get_frame_shift.sh $test_data_dir) || exit 1
  
  graph_dir=${dir}/graph_${output_name}
  if [ $stage -le 5 ]; then
    mkdir -p $graph_dir
  
    # 1 for silence and 2 for speech
    cat <<EOF > $graph_dir/words.txt
  <eps> 0
  silence 1
  speech 2
  EOF
  
    $cmd $graph_dir/log/make_graph.log \
      steps/segmentation/internal/prepare_sad_graph.py $graph_opts \
        --frame-shift=$(perl -e "print $frame_shift * $frame_subsampling_factor") - \| \
      fstcompile --isymbols=$graph_dir/words.txt --osymbols=$graph_dir/words.txt '>' \
        $graph_dir/HCLG.fst
  fi
  
  ###############################################################################
  ## Do Viterbi decoding to create per-frame alignments.
  ###############################################################################
  
  post_vec=$sad_nnet_dir/post_${output_name}.vec
  if [ ! -f $sad_nnet_dir/post_${output_name}.vec ]; then
    if [ ! -f $sad_nnet_dir/post_${output_name}.txt ]; then
      echo "$0: Could not find $sad_nnet_dir/post_${output_name}.vec. "
      echo "Re-run the corresponding stage in the training script possibly "
      echo "with --compute-average-posteriors=true or compute the priors "
      echo "from the training labels"
      exit 1
    else
      post_vec=$sad_nnet_dir/post_${output_name}.txt
    fi
  fi
  
  mkdir -p $seg_dir
  if [ $stage -le 6 ]; then
    steps/segmentation/internal/get_transform_probs_mat.py \
      --priors="$post_vec" $transform_probs_opts > $seg_dir/transform_probs.mat
  
    steps/segmentation/decode_sad.sh --acwt $acwt --cmd "$cmd" \
      --nj $nj \
      --transform "$seg_dir/transform_probs.mat" \
      $graph_dir $sad_dir $seg_dir
  fi
  
  ###############################################################################
  ## Post-process segmentation to create kaldi data directory.
  ###############################################################################
  
  if [ $stage -le 7 ]; then
    steps/segmentation/post_process_sad_to_segments.sh \
      --segment-padding $segment_padding --min-segment-dur $min_segment_dur \
      --merge-consecutive-max-dur $merge_consecutive_max_dur \
      --cmd "$cmd" --frame-shift $(perl -e "print $frame_subsampling_factor * $frame_shift") \
      ${test_data_dir} ${seg_dir} ${seg_dir}
  fi
  
  if [ $stage -le 8 ]; then
    utils/data/subsegment_data_dir.sh ${test_data_dir} ${seg_dir}/segments \
      ${data_dir}_seg
    cp $src_data_dir/wav.scp ${data_dir}_seg
    cp $src_data_dir/{stm,reco2file_and_channel,glm} ${data_dir}_seg/ || true
    utils/fix_data_dir.sh ${data_dir}_seg
  fi
  
  echo "$0: Created output segmented kaldi data directory in ${data_dir}_seg"
  exit 0