detect_speech_activity.sh
10.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#!/bin/bash
# Copyright 2016-17 Vimal Manohar
# 2017 Nagendra Kumar Goel
# Apache 2.0.
# This script does nnet3-based speech activity detection given an input
# kaldi data directory and outputs a segmented kaldi data directory.
# This script can also do music detection and other similar segmentation
# using appropriate options such as --output-name output-music.
set -e
set -o pipefail
set -u
if [ -f ./path.sh ]; then . ./path.sh; fi
affix= # Affix for the segmentation
nj=32
cmd=queue.pl
stage=-1
# Feature options (Must match training)
mfcc_config=conf/mfcc_hires.conf
feat_affix= # Affix for the type of feature used
convert_data_dir_to_whole=true # If true, the input data directory is
# first converted to whole data directory (i.e. whole recordings)
# and segmentation is done on that.
# If false, then the original segments are
# retained and they are split into sub-segments.
output_name=output # The output node in the network
sad_name=sad # Base name for the directory storing the computed loglikes
# Can be music for music detection
segmentation_name=segmentation # Base name for the directory doing segmentation
# Can be segmentation_music for music detection
# SAD network config
iter=final # Model iteration to use
# Contexts must ideally match training for LSTM models, but
# may not necessarily for stats components
extra_left_context=0 # Set to some large value, typically 40 for LSTM (must match training)
extra_right_context=0
extra_left_context_initial=-1
extra_right_context_final=-1
frames_per_chunk=150
# Decoding options
graph_opts="--min-silence-duration=0.03 --min-speech-duration=0.3 --max-speech-duration=10.0"
acwt=0.3
# These <from>_in_<to>_weight represent the fraction of <from> probability
# to transfer to <to> class.
# e.g. --speech-in-sil-weight=0.0 --garbage-in-sil-weight=0.0 --sil-in-speech-weight=0.0 --garbage-in-speech-weight=0.3
transform_probs_opts=""
# Postprocessing options
segment_padding=0.2 # Duration (in seconds) of padding added to segments
min_segment_dur=0 # Minimum duration (in seconds) required for a segment to be included
# This is before any padding. Segments shorter than this duration will be removed.
# This is an alternative to --min-speech-duration above.
merge_consecutive_max_dur=0 # Merge consecutive segments as long as the merged segment is no longer than this many
# seconds. The segments are only merged if their boundaries are touching.
# This is after padding by --segment-padding seconds.
# 0 means do not merge. Use 'inf' to not limit the duration.
echo $*
. utils/parse_options.sh
if [ $# -ne 5 ]; then
echo "This script does nnet3-based speech activity detection given an input kaldi "
echo "data directory and outputs an output kaldi data directory."
echo "See script for details of the options to be supplied."
echo "Usage: $0 <src-data-dir> <sad-nnet-dir> <mfcc-dir> <work-dir> <out-data-dir>"
echo " e.g.: $0 ~/workspace/egs/ami/s5b/data/sdm1/dev exp/nnet3_sad_snr/nnet_tdnn_j_n4 \\"
echo " mfcc_hires exp/segmentation_sad_snr/nnet_tdnn_j_n4 data/ami_sdm1_dev"
echo ""
echo "Options: "
echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs."
echo " --nj <num-job> # number of parallel jobs to run."
echo " --stage <stage> # stage to do partial re-run from."
echo " --convert-data-dir-to-whole <true|false> # If true, the input data directory is "
echo " # first converted to whole data directory (i.e. whole recordings) "
echo " # and segmentation is done on that."
echo " # If false, then the original segments are "
echo " # retained and they are split into sub-segments."
echo " --output-name <name> # The output node in the network"
echo " --extra-left-context <context|0> # Set to some large value, typically 40 for LSTM (must match training)"
echo " --extra-right-context <context|0> # For BLSTM or statistics pooling"
exit 1
fi
src_data_dir=$1 # The input data directory that needs to be segmented.
# If convert_data_dir_to_whole is true, any segments in that will be ignored.
sad_nnet_dir=$2 # The SAD neural network
mfcc_dir=$3 # The directory to store the features
dir=$4 # Work directory
data_dir=$5 # The output data directory will be ${data_dir}_seg
affix=${affix:+_$affix}
feat_affix=${feat_affix:+_$feat_affix}
data_id=`basename $data_dir`
sad_dir=${dir}/${sad_name}${affix}_${data_id}_whole${feat_affix}
seg_dir=${dir}/${segmentation_name}${affix}_${data_id}_whole${feat_affix}
if $convert_data_dir_to_whole; then
test_data_dir=data/${data_id}_whole${feat_affix}_hires
if [ $stage -le 0 ]; then
rm -r ${test_data_dir} || true
utils/data/convert_data_dir_to_whole.sh $src_data_dir ${test_data_dir}
fi
else
test_data_dir=data/${data_id}${feat_affix}_hires
if [ $stage -le 0 ]; then
rm -r ${test_data_dir} || true
utils/copy_data_dir.sh $src_data_dir $test_data_dir
fi
fi
###############################################################################
## Extract input features
###############################################################################
if [ $stage -le 1 ]; then
utils/fix_data_dir.sh $test_data_dir
steps/make_mfcc.sh --mfcc-config $mfcc_config --nj $nj --cmd "$cmd" --write-utt2num-frames true \
${test_data_dir} exp/make_hires$feat_affix/${data_id} $mfcc_dir
steps/compute_cmvn_stats.sh ${test_data_dir} exp/make_hires$feat_affix/${data_id} $mfcc_dir
utils/fix_data_dir.sh ${test_data_dir}
fi
###############################################################################
## Forward pass through the network network and dump the log-likelihoods.
###############################################################################
frame_subsampling_factor=1
if [ -f $sad_nnet_dir/frame_subsampling_factor ]; then
frame_subsampling_factor=$(cat $sad_nnet_dir/frame_subsampling_factor)
fi
mkdir -p $dir
if [ $stage -le 4 ]; then
if [ "$(readlink -f $sad_nnet_dir)" != "$(readlink -f $dir)" ]; then
cp $sad_nnet_dir/cmvn_opts $dir || exit 1
fi
########################################################################
## Initialize neural network for decoding using the output $output_name
########################################################################
if [ ! -z "$output_name" ] && [ "$output_name" != output ]; then
$cmd $dir/log/get_nnet_${output_name}.log \
nnet3-copy --edits="rename-node old-name=$output_name new-name=output" \
$sad_nnet_dir/$iter.raw $dir/${iter}_${output_name}.raw || exit 1
iter=${iter}_${output_name}
else
if ! diff $sad_nnet_dir/$iter.raw $dir/$iter.raw; then
cp $sad_nnet_dir/$iter.raw $dir/
fi
fi
steps/nnet3/compute_output.sh --nj $nj --cmd "$cmd" \
--iter ${iter} \
--extra-left-context $extra_left_context \
--extra-right-context $extra_right_context \
--extra-left-context-initial $extra_left_context_initial \
--extra-right-context-final $extra_right_context_final \
--frames-per-chunk $frames_per_chunk --apply-exp true \
--frame-subsampling-factor $frame_subsampling_factor \
${test_data_dir} $dir $sad_dir || exit 1
fi
###############################################################################
## Prepare FST we search to make speech/silence decisions.
###############################################################################
utils/data/get_utt2dur.sh --nj $nj --cmd "$cmd" $test_data_dir || exit 1
frame_shift=$(utils/data/get_frame_shift.sh $test_data_dir) || exit 1
graph_dir=${dir}/graph_${output_name}
if [ $stage -le 5 ]; then
mkdir -p $graph_dir
# 1 for silence and 2 for speech
cat <<EOF > $graph_dir/words.txt
<eps> 0
silence 1
speech 2
EOF
$cmd $graph_dir/log/make_graph.log \
steps/segmentation/internal/prepare_sad_graph.py $graph_opts \
--frame-shift=$(perl -e "print $frame_shift * $frame_subsampling_factor") - \| \
fstcompile --isymbols=$graph_dir/words.txt --osymbols=$graph_dir/words.txt '>' \
$graph_dir/HCLG.fst
fi
###############################################################################
## Do Viterbi decoding to create per-frame alignments.
###############################################################################
post_vec=$sad_nnet_dir/post_${output_name}.vec
if [ ! -f $sad_nnet_dir/post_${output_name}.vec ]; then
if [ ! -f $sad_nnet_dir/post_${output_name}.txt ]; then
echo "$0: Could not find $sad_nnet_dir/post_${output_name}.vec. "
echo "Re-run the corresponding stage in the training script possibly "
echo "with --compute-average-posteriors=true or compute the priors "
echo "from the training labels"
exit 1
else
post_vec=$sad_nnet_dir/post_${output_name}.txt
fi
fi
mkdir -p $seg_dir
if [ $stage -le 6 ]; then
steps/segmentation/internal/get_transform_probs_mat.py \
--priors="$post_vec" $transform_probs_opts > $seg_dir/transform_probs.mat
steps/segmentation/decode_sad.sh --acwt $acwt --cmd "$cmd" \
--nj $nj \
--transform "$seg_dir/transform_probs.mat" \
$graph_dir $sad_dir $seg_dir
fi
###############################################################################
## Post-process segmentation to create kaldi data directory.
###############################################################################
if [ $stage -le 7 ]; then
steps/segmentation/post_process_sad_to_segments.sh \
--segment-padding $segment_padding --min-segment-dur $min_segment_dur \
--merge-consecutive-max-dur $merge_consecutive_max_dur \
--cmd "$cmd" --frame-shift $(perl -e "print $frame_subsampling_factor * $frame_shift") \
${test_data_dir} ${seg_dir} ${seg_dir}
fi
if [ $stage -le 8 ]; then
utils/data/subsegment_data_dir.sh ${test_data_dir} ${seg_dir}/segments \
${data_dir}_seg
cp $src_data_dir/wav.scp ${data_dir}_seg
cp $src_data_dir/{stm,reco2file_and_channel,glm} ${data_dir}_seg/ || true
utils/fix_data_dir.sh ${data_dir}_seg
fi
echo "$0: Created output segmented kaldi data directory in ${data_dir}_seg"
exit 0