Blame view
egs/wsj/s5/steps/segmentation/internal/sad_to_segments.py
13.2 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
#!/usr/bin/env python # Copyright 2017 Vimal Manohar # 2018 Capital One (Author: Zhiyuan Guan) # Apache 2.0 """ This script converts frame-level speech activity detection marks (in kaldi integer vector text archive format) into kaldi segments and utt2spk. The input integer vectors are expected to contain '1' for silence frames and '2' for speech frames. """ from __future__ import print_function import argparse import logging import sys sys.path.insert(0, 'steps') import libs.common as common_lib logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) handler = logging.StreamHandler() handler.setLevel(logging.INFO) formatter = logging.Formatter("%(asctime)s [%(pathname)s:%(lineno)s - " "%(funcName)s - %(levelname)s ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) global_verbose = 0 def get_args(): parser = argparse.ArgumentParser( description=""" This script converts frame-level speech activity detection marks (in kaldi integer vector text archive format) into kaldi segments and utt2spk. The input integer vectors are expected to contain 1 for silence frames and 2 for speech frames. """, formatter_class=argparse.RawTextHelpFormatter) parser.add_argument("--verbose", type=int, choices=[0, 1, 2, 3], default=0, help="Higher verbosity for more logging") parser.add_argument("--utt2dur", type=str, help="File containing durations of utterances.") parser.add_argument("--frame-shift", type=float, default=0.01, help="Frame shift to convert frame indexes to time") parser.add_argument("--segment-padding", type=float, default=0.2, help="Additional padding on speech segments. But we " "ensure that the padding does not go beyond the " "adjacent segment.") parser.add_argument("--min-segment-dur", type=float, default=0, help="Minimum duration (in seconds) required for a segment " "to be included. This is before any padding. Segments " "shorter than this duration will be removed.") parser.add_argument("--merge-consecutive-max-dur", type=float, default=0, help="Merge consecutive segments as long as the merged " "segment is no longer than this many seconds. The segments " "are only merged if their boundaries are touching. " "This is after padding by --segment-padding seconds." "0 means do not merge. Use 'inf' to not limit the duration.") parser.add_argument("in_sad", type=str, help="Input file containing alignments in " "text archive format") parser.add_argument("out_segments", type=str, help="Output kaldi segments file") args = parser.parse_args() global global_verbose global_verbose = args.verbose logger.info("Setting verbosity to {0}".format(global_verbose)) if args.verbose >= 3: logger.setLevel(logging.DEBUG) handler.setLevel(logging.DEBUG) return args def to_str(segment): assert len(segment) == 3 return "[{0:.3f}, {1:.3f}, {2}]".format(segment[0], segment[1], segment[2]) class SegmenterStats(object): """Stores stats about the post-process stages""" def __init__(self): self.num_segments_initial = 0 self.num_short_segments_filtered = 0 self.num_merges = 0 self.num_segments_final = 0 self.initial_duration = 0.0 self.padding_duration = 0.0 self.filter_short_duration = 0.0 self.final_duration = 0.0 def add(self, other): """Adds stats from another object""" self.num_segments_initial += other.num_segments_initial self.num_short_segments_filtered += other.num_short_segments_filtered self.num_merges += other.num_merges self.num_segments_final += other.num_segments_final self.initial_duration += other.initial_duration self.filter_short_duration += other.filter_short_duration self.padding_duration += other.padding_duration self.final_duration += other.final_duration def __str__(self): return ("num-segments-initial={num_segments_initial}, " "num-short-segments-filtered={num_short_segments_filtered}, " "num-merges={num_merges}, " "num-segments-final={num_segments_final}, " "initial-duration={initial_duration}, " "filter-short-duration={filter_short_duration}, " "padding-duration={padding_duration}, " "final-duration={final_duration}".format( num_segments_initial=self.num_segments_initial, num_short_segments_filtered=self.num_short_segments_filtered, num_merges=self.num_merges, num_segments_final=self.num_segments_final, initial_duration=self.initial_duration, filter_short_duration=self.filter_short_duration, padding_duration=self.padding_duration, final_duration=self.final_duration)) def process_label(text_label): """Processes an input integer label and returns a 1 or 2, where 1 is for silence and 2 is for speech. Arguments: text_label -- input label (must be integer) """ prev_label = int(text_label) if prev_label not in [1, 2]: raise ValueError("Expecting label to 1 (non-speech) or 2 (speech); " "got {}".format(prev_label)) return prev_label class Segmentation(object): """Stores segmentation for an utterances""" def __init__(self): self.segments = None self.stats = SegmenterStats() def initialize_segments(self, alignment, frame_shift=0.01): """Initializes segments from input alignment. The alignment is frame-level speech-activity detection marks, each of which must be 1 or 2.""" self.segments = [] assert len(alignment) > 0 prev_label = None prev_length = 0 for i, text_label in enumerate(alignment): if prev_label is not None and int(text_label) != prev_label: if prev_label == 2: self.segments.append( [float(i - prev_length) * frame_shift, float(i) * frame_shift, prev_label]) self.stats.initial_duration += (prev_length * frame_shift) prev_label = process_label(text_label) prev_length = 0 elif prev_label is None: prev_label = process_label(text_label) prev_length += 1 if prev_length > 0 and prev_label == 2: self.segments.append( [float(len(alignment) - prev_length) * frame_shift, float(len(alignment)) * frame_shift, prev_label]) self.stats.initial_duration += (prev_length * frame_shift) self.stats.num_segments_initial = len(self.segments) self.stats.num_segments_final = len(self.segments) self.stats.final_duration = self.stats.initial_duration def filter_short_segments(self, min_dur): """Filters out segments with durations shorter than 'min_dur'.""" if min_dur <= 0: return segments_kept = [] for segment in self.segments: assert segment[2] == 2, segment dur = segment[1] - segment[0] if dur < min_dur: self.stats.filter_short_duration += dur self.stats.num_short_segments_filtered += 1 else: segments_kept.append(segment) self.segments = segments_kept self.stats.num_segments_final = len(self.segments) self.stats.final_duration -= self.stats.filter_short_duration def pad_speech_segments(self, segment_padding, max_duration=float("inf")): """Pads segments by duration 'segment_padding' on either sides, but ensures that the segments don't go beyond the neighboring segments or the duration of the utterance 'max_duration'.""" if max_duration == None: max_duration = float("inf") for i, segment in enumerate(self.segments): assert segment[2] == 2, segment segment[0] -= segment_padding # try adding padding on the left side self.stats.padding_duration += segment_padding if segment[0] < 0.0: # Padding takes the segment start to before the beginning of the utterance. # Reduce padding. self.stats.padding_duration += segment[0] segment[0] = 0.0 if i >= 1 and self.segments[i - 1][1] > segment[0]: # Padding takes the segment start to before the end the previous segment. # Reduce padding. self.stats.padding_duration -= ( self.segments[i - 1][1] - segment[0]) segment[0] = self.segments[i - 1][1] segment[1] += segment_padding self.stats.padding_duration += segment_padding if segment[1] >= max_duration: # Padding takes the segment end beyond the max duration of the utterance. # Reduce padding. self.stats.padding_duration -= (segment[1] - max_duration) segment[1] = max_duration if (i + 1 < len(self.segments) and segment[1] > self.segments[i + 1][0]): # Padding takes the segment end beyond the start of the next segment. # Reduce padding. self.stats.padding_duration -= ( segment[1] - self.segments[i + 1][0]) segment[1] = self.segments[i + 1][0] self.stats.final_duration += self.stats.padding_duration def merge_consecutive_segments(self, max_dur): """Merge consecutive segments (happens after padding), provided that the merged segment is no longer than 'max_dur'.""" if max_dur <= 0 or not self.segments: return merged_segments = [self.segments[0]] for segment in self.segments[1:]: assert segment[2] == 2, segment if segment[0] == merged_segments[-1][1] and \ segment[1] - merged_segments[-1][0] <= max_dur: # The segment starts at the same time the last segment ends, # and the merged segment is shorter than 'max_dur'. # Extend the previous segment. merged_segments[-1][1] = segment[1] self.stats.num_merges += 1 else: merged_segments.append(segment) self.segments = merged_segments self.stats.num_segments_final = len(self.segments) def write(self, key, file_handle): """Write segments to file""" if global_verbose >= 2: logger.info("For key {key}, got stats {stats}".format( key=key, stats=self.stats)) for segment in self.segments: seg_id = "{key}-{st:07d}-{end:07d}".format( key=key, st=int(segment[0] * 100), end=int(segment[1] * 100)) print("{seg_id} {key} {st:.2f} {end:.2f}".format( seg_id=seg_id, key=key, st=segment[0], end=segment[1]), file=file_handle) def run(args): """The main function that does everything.""" utt2dur = {} if args.utt2dur is not None: with common_lib.smart_open(args.utt2dur) as utt2dur_fh: for line in utt2dur_fh: parts = line.strip().split() if len(parts) != 2: raise RuntimeError("Unable to parse line '{0}' in {1}" "".format(line.strip(), args.utt2dur)) utt2dur[parts[0]] = float(parts[1]) global_stats = SegmenterStats() with common_lib.smart_open(args.in_sad) as in_sad_fh, \ common_lib.smart_open(args.out_segments, 'w') as out_segments_fh: for line in in_sad_fh: parts = line.strip().split() utt_id = parts[0] if len(parts) < 2: raise RuntimeError("Unable to parse line '{0}' in {1}" "".format(line.strip(), in_sad_fh)) segmentation = Segmentation() segmentation.initialize_segments( parts[1:], args.frame_shift) segmentation.filter_short_segments(args.min_segment_dur) segmentation.pad_speech_segments(args.segment_padding, None if args.utt2dur is None else utt2dur[utt_id]) segmentation.merge_consecutive_segments(args.merge_consecutive_max_dur) segmentation.write(utt_id, out_segments_fh) global_stats.add(segmentation.stats) logger.info(global_stats) def main(): """Parses arguments and calls the run method""" args = get_args() try: run(args) except Exception: raise if __name__ == '__main__': main() |