sad_to_segments.py
13.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
#!/usr/bin/env python
# Copyright 2017 Vimal Manohar
# 2018 Capital One (Author: Zhiyuan Guan)
# Apache 2.0
"""
This script converts frame-level speech activity detection marks (in kaldi
integer vector text archive format) into kaldi segments and utt2spk.
The input integer vectors are expected to contain '1' for silence frames
and '2' for speech frames.
"""
from __future__ import print_function
import argparse
import logging
import sys
sys.path.insert(0, 'steps')
import libs.common as common_lib
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
handler = logging.StreamHandler()
handler.setLevel(logging.INFO)
formatter = logging.Formatter("%(asctime)s [%(pathname)s:%(lineno)s - "
"%(funcName)s - %(levelname)s ] %(message)s")
handler.setFormatter(formatter)
logger.addHandler(handler)
global_verbose = 0
def get_args():
parser = argparse.ArgumentParser(
description="""
This script converts frame-level speech activity detection marks (in kaldi
integer vector text archive format) into kaldi segments and utt2spk.
The input integer vectors are expected to contain 1 for silence frames
and 2 for speech frames.
""",
formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument("--verbose", type=int, choices=[0, 1, 2, 3],
default=0, help="Higher verbosity for more logging")
parser.add_argument("--utt2dur", type=str,
help="File containing durations of utterances.")
parser.add_argument("--frame-shift", type=float, default=0.01,
help="Frame shift to convert frame indexes to time")
parser.add_argument("--segment-padding", type=float, default=0.2,
help="Additional padding on speech segments. But we "
"ensure that the padding does not go beyond the "
"adjacent segment.")
parser.add_argument("--min-segment-dur", type=float, default=0,
help="Minimum duration (in seconds) required for a segment "
"to be included. This is before any padding. Segments "
"shorter than this duration will be removed.")
parser.add_argument("--merge-consecutive-max-dur", type=float, default=0,
help="Merge consecutive segments as long as the merged "
"segment is no longer than this many seconds. The segments "
"are only merged if their boundaries are touching. "
"This is after padding by --segment-padding seconds."
"0 means do not merge. Use 'inf' to not limit the duration.")
parser.add_argument("in_sad", type=str,
help="Input file containing alignments in "
"text archive format")
parser.add_argument("out_segments", type=str,
help="Output kaldi segments file")
args = parser.parse_args()
global global_verbose
global_verbose = args.verbose
logger.info("Setting verbosity to {0}".format(global_verbose))
if args.verbose >= 3:
logger.setLevel(logging.DEBUG)
handler.setLevel(logging.DEBUG)
return args
def to_str(segment):
assert len(segment) == 3
return "[{0:.3f}, {1:.3f}, {2}]".format(segment[0], segment[1],
segment[2])
class SegmenterStats(object):
"""Stores stats about the post-process stages"""
def __init__(self):
self.num_segments_initial = 0
self.num_short_segments_filtered = 0
self.num_merges = 0
self.num_segments_final = 0
self.initial_duration = 0.0
self.padding_duration = 0.0
self.filter_short_duration = 0.0
self.final_duration = 0.0
def add(self, other):
"""Adds stats from another object"""
self.num_segments_initial += other.num_segments_initial
self.num_short_segments_filtered += other.num_short_segments_filtered
self.num_merges += other.num_merges
self.num_segments_final += other.num_segments_final
self.initial_duration += other.initial_duration
self.filter_short_duration += other.filter_short_duration
self.padding_duration += other.padding_duration
self.final_duration += other.final_duration
def __str__(self):
return ("num-segments-initial={num_segments_initial}, "
"num-short-segments-filtered={num_short_segments_filtered}, "
"num-merges={num_merges}, "
"num-segments-final={num_segments_final}, "
"initial-duration={initial_duration}, "
"filter-short-duration={filter_short_duration}, "
"padding-duration={padding_duration}, "
"final-duration={final_duration}".format(
num_segments_initial=self.num_segments_initial,
num_short_segments_filtered=self.num_short_segments_filtered,
num_merges=self.num_merges,
num_segments_final=self.num_segments_final,
initial_duration=self.initial_duration,
filter_short_duration=self.filter_short_duration,
padding_duration=self.padding_duration,
final_duration=self.final_duration))
def process_label(text_label):
"""Processes an input integer label and returns a 1 or 2,
where 1 is for silence and 2 is for speech.
Arguments:
text_label -- input label (must be integer)
"""
prev_label = int(text_label)
if prev_label not in [1, 2]:
raise ValueError("Expecting label to 1 (non-speech) or 2 (speech); "
"got {}".format(prev_label))
return prev_label
class Segmentation(object):
"""Stores segmentation for an utterances"""
def __init__(self):
self.segments = None
self.stats = SegmenterStats()
def initialize_segments(self, alignment, frame_shift=0.01):
"""Initializes segments from input alignment.
The alignment is frame-level speech-activity detection marks,
each of which must be 1 or 2."""
self.segments = []
assert len(alignment) > 0
prev_label = None
prev_length = 0
for i, text_label in enumerate(alignment):
if prev_label is not None and int(text_label) != prev_label:
if prev_label == 2:
self.segments.append(
[float(i - prev_length) * frame_shift,
float(i) * frame_shift, prev_label])
self.stats.initial_duration += (prev_length * frame_shift)
prev_label = process_label(text_label)
prev_length = 0
elif prev_label is None:
prev_label = process_label(text_label)
prev_length += 1
if prev_length > 0 and prev_label == 2:
self.segments.append(
[float(len(alignment) - prev_length) * frame_shift,
float(len(alignment)) * frame_shift, prev_label])
self.stats.initial_duration += (prev_length * frame_shift)
self.stats.num_segments_initial = len(self.segments)
self.stats.num_segments_final = len(self.segments)
self.stats.final_duration = self.stats.initial_duration
def filter_short_segments(self, min_dur):
"""Filters out segments with durations shorter than 'min_dur'."""
if min_dur <= 0:
return
segments_kept = []
for segment in self.segments:
assert segment[2] == 2, segment
dur = segment[1] - segment[0]
if dur < min_dur:
self.stats.filter_short_duration += dur
self.stats.num_short_segments_filtered += 1
else:
segments_kept.append(segment)
self.segments = segments_kept
self.stats.num_segments_final = len(self.segments)
self.stats.final_duration -= self.stats.filter_short_duration
def pad_speech_segments(self, segment_padding, max_duration=float("inf")):
"""Pads segments by duration 'segment_padding' on either sides, but
ensures that the segments don't go beyond the neighboring segments
or the duration of the utterance 'max_duration'."""
if max_duration == None:
max_duration = float("inf")
for i, segment in enumerate(self.segments):
assert segment[2] == 2, segment
segment[0] -= segment_padding # try adding padding on the left side
self.stats.padding_duration += segment_padding
if segment[0] < 0.0:
# Padding takes the segment start to before the beginning of the utterance.
# Reduce padding.
self.stats.padding_duration += segment[0]
segment[0] = 0.0
if i >= 1 and self.segments[i - 1][1] > segment[0]:
# Padding takes the segment start to before the end the previous segment.
# Reduce padding.
self.stats.padding_duration -= (
self.segments[i - 1][1] - segment[0])
segment[0] = self.segments[i - 1][1]
segment[1] += segment_padding
self.stats.padding_duration += segment_padding
if segment[1] >= max_duration:
# Padding takes the segment end beyond the max duration of the utterance.
# Reduce padding.
self.stats.padding_duration -= (segment[1] - max_duration)
segment[1] = max_duration
if (i + 1 < len(self.segments)
and segment[1] > self.segments[i + 1][0]):
# Padding takes the segment end beyond the start of the next segment.
# Reduce padding.
self.stats.padding_duration -= (
segment[1] - self.segments[i + 1][0])
segment[1] = self.segments[i + 1][0]
self.stats.final_duration += self.stats.padding_duration
def merge_consecutive_segments(self, max_dur):
"""Merge consecutive segments (happens after padding), provided that
the merged segment is no longer than 'max_dur'."""
if max_dur <= 0 or not self.segments:
return
merged_segments = [self.segments[0]]
for segment in self.segments[1:]:
assert segment[2] == 2, segment
if segment[0] == merged_segments[-1][1] and \
segment[1] - merged_segments[-1][0] <= max_dur:
# The segment starts at the same time the last segment ends,
# and the merged segment is shorter than 'max_dur'.
# Extend the previous segment.
merged_segments[-1][1] = segment[1]
self.stats.num_merges += 1
else:
merged_segments.append(segment)
self.segments = merged_segments
self.stats.num_segments_final = len(self.segments)
def write(self, key, file_handle):
"""Write segments to file"""
if global_verbose >= 2:
logger.info("For key {key}, got stats {stats}".format(
key=key, stats=self.stats))
for segment in self.segments:
seg_id = "{key}-{st:07d}-{end:07d}".format(
key=key, st=int(segment[0] * 100), end=int(segment[1] * 100))
print("{seg_id} {key} {st:.2f} {end:.2f}".format(
seg_id=seg_id, key=key, st=segment[0], end=segment[1]),
file=file_handle)
def run(args):
"""The main function that does everything."""
utt2dur = {}
if args.utt2dur is not None:
with common_lib.smart_open(args.utt2dur) as utt2dur_fh:
for line in utt2dur_fh:
parts = line.strip().split()
if len(parts) != 2:
raise RuntimeError("Unable to parse line '{0}' in {1}"
"".format(line.strip(), args.utt2dur))
utt2dur[parts[0]] = float(parts[1])
global_stats = SegmenterStats()
with common_lib.smart_open(args.in_sad) as in_sad_fh, \
common_lib.smart_open(args.out_segments, 'w') as out_segments_fh:
for line in in_sad_fh:
parts = line.strip().split()
utt_id = parts[0]
if len(parts) < 2:
raise RuntimeError("Unable to parse line '{0}' in {1}"
"".format(line.strip(),
in_sad_fh))
segmentation = Segmentation()
segmentation.initialize_segments(
parts[1:], args.frame_shift)
segmentation.filter_short_segments(args.min_segment_dur)
segmentation.pad_speech_segments(args.segment_padding,
None if args.utt2dur is None
else utt2dur[utt_id])
segmentation.merge_consecutive_segments(args.merge_consecutive_max_dur)
segmentation.write(utt_id, out_segments_fh)
global_stats.add(segmentation.stats)
logger.info(global_stats)
def main():
"""Parses arguments and calls the run method"""
args = get_args()
try:
run(args)
except Exception:
raise
if __name__ == '__main__':
main()